skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An efficient method for high-precision potassium isotope analysis in carbonate materials
High-precision potassium (K) isotope measurements in marine carbonates allow using this novel geochemical proxy to constrain seawater chemistry through geologic time. However, these measurements are still scarce due to the challenges of low-K contents in carbonates during K ion chromatography, such as insufficient sample purification, non-quantitative yield, and high accumulative blank. Here we optimize a dual-column K purification method that addresses these challenges, achieving a satisfactory K separation using 100–150 mg carbonates for routine high-precision K isotope analysis on the Sapphire™ MC-ICP-MS. We then report K isotope compositions in multiple certified reference materials, including limestone, dolostone, coral, and basalt for future inter-laboratory comparisons. The optimized K purification method provides great potential for future K isotope studies of marine carbonates.  more » « less
Award ID(s):
1848153
PAR ID:
10389594
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Analytical Atomic Spectrometry
Volume:
37
Issue:
11
ISSN:
0267-9477
Page Range / eLocation ID:
2410 to 2419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The three-isotope system of oxygen (16O, 17O, 18O) is a powerful tool to study environmental oxidation chemistry and cycling of oxygen-bearing species (e.g., sulfates, nitrates, carbonates, etc.). Despite its evident utility, little work has focused onextending the triple oxygen isotope (Δ’17O) tool to oxygen contained in organic matter (OM). This is largely due to methodological challenges with isolating OM-bound oxygen and preparing it for isotopic analysis. Herein, we report on a newly developed method for high-precision Δ’17O measurements of OM (Δ’17O precision of 0.020‰) and apply this technique to investigate partial photochemical oxidation of Suwannee River natural OM in air-equilibrated aquatic samples. Through this, we reveal that the oxygen isotope evolution of the Suwannee OM supports a model whereby OM partial photo-oxidation proceeds via one or more reactive oxygen intermediates. Our measurements further highlight the potential of triple oxygen isotope analyses on OM-bound oxygen to fingerprint OM oxidation pathways, redox chemistry, and source and synthesis reactions. 
    more » « less
  2. This study develops and optimizes a new protocol to measure lithium isotope ratios using a single collector quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) operated under hot plasma (1550 W) conditions with a sample–standard bracketing method. Our Q-ICP-MS method reduces sample consumption to 2.5 ng of Li and achieves a high long-term precision of 1.1‰ (2SD). This Q-ICP-MS method exhibits high matrix tolerance (Na/Li < 100), suitable for ng-sized and high-matrix geological samples. We also developed a dual-column system for Li separation, with large loading capacity (29.6 meq), complete recovery (∼100%) and satisfactory purification (Na/Li m m −1 < 1), as well as a fixed elution range for Li fractions (28–60 mL). This new chromatography method has been applied to chemically diverse materials, producing consistent results. In addition, we report the Li isotope compositions of 13 geostandards, and our measurements agree well with reported data within analytical uncertainties. This study documents that Li element concentration and Li isotope composition can be routinely measured using a single collector ICP-MS, which is convenient and commercially affordable for future Li isotope research across the fields of Earth and Environmental Sciences. 
    more » « less
  3. Stable potassium (K) isotopes (41K/39K) have shown great promise as novel chemical tracers for a wide range of bio-, geo-, and cosmo-chemical processes, but high precision stable K isotope analysis remains a challenge for plasma source mass spectrometry due to intense argon-related interferences produced directly from argon plasma. Here we provide an assessment on the analytical figures of merit of a new generation collision-cell equipped multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS), Sapphire from Nu Instruments, for K isotope analysis based on our extensive tests over a duration of ~8 months. Because use of helium and hydrogen as collision/reaction gases can reduce argon-related interferences to negligible levels at optimal flow rates, the collision-cell mode can operate at low mass resolution during K isotope analysis, providing >2 orders of magnitude higher K sensitivity (>1000 V per μg mL-1 K), as compared to the widely used “cold plasma” method, and the capability for direct 40K measurement. One challenge of the collision/reaction cell analysis on Sapphire is its higher susceptibility to matrix effects, requiring effective sample purification prior to analysis. Also, the collision-cell mode on Sapphire shows a pronounced effect associated with concentration (or ion intensity) mismatch between the sample and the bracketing standard during analysis, and this effect may not be fully eliminated through conventional concentration matching practice. Instead, we developed a correction method for this concentration/ion intensity mismatch effect. Our method reduces the burden to the operator and increases sample throughput. This method allows for accurate K isotope analysis with an intermediate precision of ≤0.05 ‰ (2SD) to be routinely achieved using the collision cell on Sapphire, representing a major advance to stable K isotope analysis. 
    more » « less
  4. A novel method for extracting small quantities of potassium (K) from highly sodium- and calcium-rich samples for high-precision stable K isotope analysis. 
    more » « less
  5. Marine carbonate, an important CO2 reservoir, is continuously sent to the Earth's deep interior at subduction zones, forming an essential part of the global carbon cycle. The pros and cons of using calcium isotope compositions to trace marine carbonates recycled into the mantle are discussed in this Perspective. 
    more » « less