skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planetary Defense Mitigation Gateway: A One-Stop Gateway for Pertinent PD-Related Contents
Planetary Defense (PD) has become a critical effort of protecting our home planet by discovering potentially hazardous objects (PHOs), simulating the potential impact, and mitigating the threats. Due to the lack of structured architecture and framework, pertinent information about detecting and mitigating near earth object (NEO) threats are still dispersed throughout numerous organizations. Scattered and unorganized information can have a significant impact at the time of crisis, resulting in inefficient processes, and decisions made on incomplete data. This PD Mitigation Gateway (pd.cloud.gmu.edu) is developed and embedded within a framework to integrate the dispersed, diverse information residing at different organizations across the world. The gateway offers a home to pertinent PD-related contents and knowledge produced by the NEO mitigation team and the community through (1) a state-of-the-art smart-search discovery engine based on PD knowledge base; (2) a document archiving and understanding mechanism for managing and utilizing the results produced by the PD science community; (3) an evolving PD knowledge base accumulated from existing literature, using natural language processing and machine learning; and (4) a 4D visualization tool that allows the viewers to analyze near-Earth approaches in a three-dimensional environment using dynamic, adjustable PHO parameters to mimic point-of-impact asteroid deflections via space vehicles and particle system simulations. Along with the benefit of accessing dispersed data from a single port, this framework is built to advance discovery, collaboration, innovation, and education across the PD field-of-study, and ultimately decision support.  more » « less
Award ID(s):
1841520
PAR ID:
10139177
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Data
Volume:
4
Issue:
2
ISSN:
2306-5729
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last two decades, science gateways have become essential tools for supporting both research and education. The SimVascular application is an open source software package providing a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. With an ever-increasing user base of students, educators, clinicians, and researchers, the development group wanted a user-friendly web portal for users to run SimVascular flow simulations and to be able to support a large number of users with minimum effort and also hide complexity of using HPCs. This paper discusses how the SimVascular Science Gateway became a tool for students, educators, and researchers of all levels and continues to gather and grow a strong research community. 
    more » « less
  2. How to Position Your Gateway for Failure:The Ten Don’ts of Gateway DesignAbstractScience gateways are accelerators for science and education, providing user-friendly access to powerful computational resources and data analysis tools. Sustained science gateways frameworks such as Hubzero, Tapis, and Galaxy demonstrate the potential for gateways to revolutionize scientific exploration.However, despite initial promise, many gateway projects struggle to transition from prototypes to sustainable, long-term services. Well-intentioned, yet ultimately unsuccessful, gateways are part of the scientific landscape. This raises a critical question: what factors contribute to the demise of science gateways, and how can we avoid these pitfalls to ensure the success of future endeavors?This paper delves into the ten most common pitfalls that lead to science gateway failure. By analyzing these roadblocks, we aim to equip new and developing gateway initiatives with suggestions for long-term success. Our research draws on the collective experiences of numerous gateway projects.We identified critical areas where focused attention and strategic planning are essential. This knowledge will enable the development of good practices that nurture vibrant gateway communities and ensure the long-term sustainability of these valuable research tools. 
    more » « less
  3. Scientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration of recommenders in science gateways in order to spur research productivity,we present a novel “OnTimeRecommend" recommender system. The OnTimeRecommend comprises of several integrated recommender modules implemented as microservices that can be augmented to a science gateway in the form of a recommender-as-a-service. The guidance for use of the recommender modules in a science gateway is aided by a chatbot plug-in viz., Vidura Advisor. To validate our OnTimeRecommend, we integrate and show benefits for both novice and expert users in domain-specific knowledge discovery within two exemplar science gateways, one in neuroscience (CyNeuro) and the other in bioinformatics (KBCommons). 
    more » « less
  4. Debrecht, Johanna; Alexander, George; Nabb, Keith (Ed.)
    Inquiry-based learning (IBL) is a form of active learning that engages students in cognitively demanding tasks—involving students’ attention, reasoning, problem solving, and communication. In the rest of this article, we look at IBL—past, present, and future. IBL has a storied history and a growing literature of theory and research to support its efficacy as a method for teaching for entry-level postsecondary (i.e., gateway) courses in mathematics. The 20th-century roots of teaching mathematics via IBL built a foundation for recent theory-building and for research that demonstrates how IBL teaching improves students’ mathematical proficiency, their ownership of and confidence in their own thinking and reasoning, their level of classroom engagement, and their success in mathematics class and throughout their lives. Despite this positive evidence, the mathematics teaching community faces challenges in implementing IBL in the classroom. Thus, we provide practical information on overcoming obstacles to IBL teaching, examples of IBL tasks, and tips for implementing IBL instruction. With the backing of AMATYC, its sister organizations—the American Statistical Association, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics—and the growing number of IBL practitioners and researchers, the future for IBL seems bright. 
    more » « less
  5. Marine gateways play a critical role in the exchange of water, heat, salt, and nutrients between oceans and seas. Changes in gateway geometry can significantly alter both the pattern of global ocean circulation and climate. Today, the volume of dense water supplied by Atlantic–Mediterranean exchange through the Gibraltar Strait is among the largest in the global ocean. For the past 5 My, this overflow has generated a saline plume at intermediate depths in the Atlantic that deposits distinctive contouritic sediments and contributes to the formation of North Atlantic Deep Water. This single gateway configuration only developed in the Early Pliocene. During the Miocene, two narrow corridors linked the Mediterranean and Atlantic: one in northern Morocco and the other in southern Spain. Progressive restriction and closure of these corridors resulted in extreme salinity fluctuations in the Mediterranean and the precipitation of the Messinian Salinity Crisis salt giant. International Ocean Discovery Program (IODP) Expedition 401 is the offshore drilling component of a Land-2-Sea drilling proposal, Investigating Miocene Mediterranean–Atlantic Gateway Exchange (IMMAGE). Its aim is to recover a complete record of Atlantic–Mediterranean exchange from its Late Miocene inception to its current configuration by targeting Miocene offshore sediments on either side of the Gibraltar Strait. Miocene cores from the two precursor connections now exposed on land will be obtained by future International Continental Scientific Drilling Program (ICDP) campaigns. 
    more » « less