skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Evolving Design Requirements on Students' Motivation
In 2008, Gannon University was awarded a National Science Foundation S-STEM grant, known as SEECS (Scholars of Excellence in Engineering and Computer Science) which provided scholarship funding for academically talented students having financial need. Since then, the grant has been funded twice more; the current award period started in 2017 and will run until 2021. As a requirement for the SEECS program, all students must participate in a community-based design project, undertaken for a non-profit entity in the local region. This project is nominally a two-year effort, though some projects have taken longer to complete. Recently, a project has experienced several significant setbacks: 1) the original project sponsor decommitted at the end of the first year due to funding concerns; 2) the project location changed four times due to uncertain sponsor requirement and city regulations; 3) the design itself has required substantial alteration several times due to unexpected circumstances (largely due to sponsor issues.) After two and a half years, the project remains only about 50% complete, still requiring additional system level design, installation and testing. This team of SEECS students has been coping with each “sharp turn” of the project as well as may be expected. They have produced design sketches, prototypes, and conference presentations. Yet signs of confusion, frustration, and low motivation level have been observed among students and have been evidenced through student satisfaction surveys, which are administered to all SEECS students each semester. This work-in progress paper details the evolution of student perceptions of the validity of the project, compares that evolution to historic data obtained from previous design groups, and speculates about the cause/effect relationship between externally-imposed design changes and student perceptions. In particular, the effect of design changes on student enthusiasm and sense of purpose is to be examined. Preliminary conclusions and trends will be drawn from the study. The periodic evaluation, adjustment and intervention of advising will be suggested to guide students to fully benefit from such real-life project experience.  more » « less
Award ID(s):
1643869
PAR ID:
10139536
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BioMolViz is a community of practice dedicated to improving biomolecular visualization instruction. Guided by a framework of learning objectives for biomolecular visualization skills, our initial project goal was to create a repository of validated assessments to evaluate students’ visual literacy. In 2018, the team was awarded one year of seed funding, which led to a four-year National Science Foundation (NSF) grant. This support allowed BioMolViz to flourish into a community of educators in professional development workshops and working groups, where teams of participants aimed to design effective and accessible assessments to evaluate students’ biomolecular visual literacy. As the project advanced, we piloted these items in classrooms across the United States. Through a small-scale classroom testing study, we compared student and instructor perceptions of assessment difficulty, while large-scale testing revealed performance patterns that reinforced the need to understand distinct student perspectives. This led us to evaluate students’ problem-solving strategies through surveys and semi-structured interviews. Based on this work, we argue that a reimagining of the curriculum can begin with faculty, but must include productive student partnerships to enact effective change. We offer our repository of visual literacy assessments, the BioMolViz Library, as an instructor resource shaped by the student perspective, and present a new instructor training resource recently produced by our working group. As we approach the close of our funding cycle, we offer our ideas and invite conversations on fostering long-term sustainability for our robust community of practice, under all future resource models. 
    more » « less
  2. The importance of authenticity has been examined in various aspects of education; this is especially true in the area of engineering education where most graduates will matriculate to industry. However, the importance of applied and authentic examples could be even more critical in workforce development programs. In these cases, students are often enrolled with a goal of using their acquired knowledge to advance their career or move into a new role. Purely theoretical or stylized examples would not be aligned with the educational goals of these students. As part of a National Science Foundation Advanced Technological Education grant, a certificate program in high value manufacturing (HVM) has been developed. The certificate program is a collaboration between a research intensive four-year institution and an urban community college. In this certificate program students will be taking courses in manufacturing processes, design, and other business-related subjects that are pertinent to the manufacture of low volume components that have high materials costs, stringent quality requirements, and critical project timelines. This unique content area requires example that comprise these pertinent aspects of HVM. This is particularly true of the five newly developed courses covering materials, project management, quality, logistics, and computer-aided design. While the analogous courses at a four-year degree granting institution would likely use stylized examples in these courses, this would not be preferable in an applied certificate program. This work discusses the acquisition and refinement of authentic and applied examples that are applicable to the HVM environment. Specifically, the use of industry contacts and the translation of examples into useable and appropriate examples are examined. These examples are detailed and compared to traditional stylized academic content. A methodology for examining student perceptions of these examples is also proposed. A discussion of the importance of authenticity in applied certificate programs is also presented. 
    more » « less
  3. Web-browsing histories, online newspapers, streaming music, and stock prices all show that we live in an age of data. Extracting meaning from data is necessary in many fields to comprehend the information flow. This need has fueled rapid growth in data science education aiming to serve the next generation of policy makers, data science researchers, and global citizens. Initially, teaching practices have been drawn from data science's parent disciplines (e.g., computer science and mathematics). This project addresses the early stages of developing a concept inventory of student difficulty within the newly emerging field of data science. In particular this project will address three primary research objectives: (1) identify student misconceptions in data science courses; (2) document students’ prior knowledge and identify courses that teach early data science concepts; and (3) confirm expert identification of data science concepts, and their importance for introductory-level data science curricula. During the first year of this grant, we have collected approximately 200 responses for a survey to confirm concepts from an existing body of knowledge presented by the Edison Project. Survey respondents are comprised of faculty and industry practitioners within data science and closely related fields. Preliminary analysis of these results will be presented with respect to our third research objective. In addition, we developed and launched a pilot assessment for identifying student difficulties within data science courses. The protocol includes regular responses to reflective questions by faculty, teaching assistants, and students from selected data science courses offered at the three participating institutions. Preliminary analyses will be presented along with implications for future data collection in year two of the project. In addition to the anticipated results, we expect that the data collection and analysis methodologies will be of interest to many scholars who have or will engage in discipline-based educational research. 
    more » « less
  4. STEM-Mia (“my STEM”) is a National Science Foundation funded project that provides scholarships and supports to academically talented, low-income STEM students at MDC InterAmerican Campus. Over a five-year period, the NSF - S-STEM funds will support 45 MDC students with scholarships and wrap around services toward preparing them for Science, Technology, Mathematics and Engineering (STEM) careers, which are in high-demand and critical to building a competitive workforce that will help grow America’s economy. The grant project will target two primary populations – biology and computer science majors. This presentation will discuss the impact of embedding faculty mentoring, discipline immersions, self-analysis, financial support, toward fostering and shaping student perceptions of their personal agency and empowering them to achieve their STEM-related academic and professional goals by helping them connect with the sources of their STEM self-efficacy and identity. What we are accomplishing in MDC serves as a model for two-year colleges seeking to incorporate curricular changes focused on success and retention in biology and computer science majors for populations who are underrepresented in STEM fields in general. 
    more » « less
  5. Applying for grants from the National Science Foundation (NSF) requires a paradigm shift at many community and technical colleges, because the primary emphasis at two-year colleges is on teaching. This shift is necessary because of the NSF expectation that a STEM faculty member will lead the project as Principal Investigator. Preparing successful NSF grant proposals also requires knowledge, skills, and strategies that differ from other sources from which two-year colleges seek grant funding. Since 2012, the Mentor-Connect project has been working to build capacity among two-year colleges and leadership skills among their STEM faculty to help them prepare competitive grant proposals for the National Science Foundation’s Advanced Technological Education (NSF-ATE) program. NSF-ATE focuses on improving the education of technicians for advanced technology fields that drive the nation’s economy. As an NSF-ATE-funded initiative, Mentor-Connect has developed a three-pronged approach of mentoring, technical assistance, and digital resources to help potential grantees with the complexities of the proposal submission process. Grant funding makes it possible to provide this help at no cost to eligible, two-year college educators. Mentor-Connect support services for prospective grantees are available for those who are new to ATE (community or technical colleges that have not received an NSF ATE award in 7 or more years), those seeking a larger second grant from the ATE Program after completing a small, new-to-ATE project, and for those whose first or second grant proposal submission to the NSF ATE Program was declined (not funded). The Mentor-Connect project has succeeded in raising interest in the NSF-ATE program. Over a seven-year period more than 80% of the 143 participating colleges have submitted proposals. Overall, the funding rate among colleges that participated in the Mentor-Connect project is exceptionally high. Of the 97 New-to-ATE proposals submitted from Cohorts 1 through 6, 71 have been funded, for a funding rate of 73%. Mentor-Connect is also contributing to a more geographically and demographically diverse NSF-ATE program. To analyze longer-term impacts, the project’s evaluator is conducting campus site visits at the new-to-ATE grantee institutions as their initial ATE projects are being completed. A third-party researcher has contributed to the site-visit protocol being used by evaluators. The researcher is also analyzing the site-visit reports to harvest outcomes from this work. This paper shares findings from seven cohorts that have completed a grant cycle with funding results known, as well as qualitative data from site visits with the first two cohorts of grantees. Recommendations for further research are also included. 
    more » « less