The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is in year four of a five-year NSF S-STEM funded program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This program offered financial, academic, and professional support to three two-year cohorts of students and is in the final year of the third and final cohort of the currently funded grant cycle. The SEECRS project aimed to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Over the course of the program 39 individuals received scholarship support. The program supported scholarship recipients through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Key elements of the program are: a required two-credit course that emphasized STEM identity development, course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and paring of each scholar with a faculty mentor. This paper presents data from the first four years of the program including participant outcomes and feedback on their experiences. Results from project evaluation activities such as pre and post surveys, focus groups, exit interviews, and faculty surveys are also presented and analyzed to compare how gains reported by program participants regarding such attributes as their STEM identities and sense of belonging compare to responses from a control group of students who did not participate in the program. Preliminary identification of some program best practices will also be presented.
more »
« less
Crowdsourcing Classroom Observations to Identify Misconceptions in Data Science
Web-browsing histories, online newspapers, streaming music, and stock prices all show that we live in an age of data. Extracting meaning from data is necessary in many fields to comprehend the information flow. This need has fueled rapid growth in data science education aiming to serve the next generation of policy makers, data science researchers, and global citizens. Initially, teaching practices have been drawn from data science's parent disciplines (e.g., computer science and mathematics). This project addresses the early stages of developing a concept inventory of student difficulty within the newly emerging field of data science. In particular this project will address three primary research objectives: (1) identify student misconceptions in data science courses; (2) document students’ prior knowledge and identify courses that teach early data science concepts; and (3) confirm expert identification of data science concepts, and their importance for introductory-level data science curricula. During the first year of this grant, we have collected approximately 200 responses for a survey to confirm concepts from an existing body of knowledge presented by the Edison Project. Survey respondents are comprised of faculty and industry practitioners within data science and closely related fields. Preliminary analysis of these results will be presented with respect to our third research objective. In addition, we developed and launched a pilot assessment for identifying student difficulties within data science courses. The protocol includes regular responses to reflective questions by faculty, teaching assistants, and students from selected data science courses offered at the three participating institutions. Preliminary analyses will be presented along with implications for future data collection in year two of the project. In addition to the anticipated results, we expect that the data collection and analysis methodologies will be of interest to many scholars who have or will engage in discipline-based educational research.
more »
« less
- PAR ID:
- 10191570
- Date Published:
- Journal Name:
- 2020 ASEE Virtual Annual Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Engaging Students in Undergraduate Research: Teaching Through Design, Development, and CollaborationIncorporating quality research in a college setting where undergraduate teaching is the primary goal is always challenging. Engaging undergraduate students in research-related activities using a research theme to arrange teaching materials and assignments can be beneficial. Students can be introduced to basic concepts in lower-level courses and later become effective research assistants. This paper presents such practices at Mercer University’s Computer Science Department from the students’ and faculty’s perspectives. The focus is on how to plan for breaking down the needs of research projects among student teams in various courses and provide collaboration opportunities between faculty and student researchers. Activities related to a research project supported through a NSF grant show satisfactory results for both students and the faculty advisor.more » « less
-
Although faculty-centered pedagogies are endemic across undergraduate science, technology, engineering, and mathematics education, there is increasing interest in active learning approaches. As discipline-based educational research in mechanical engineering continues to assess strategies for improving student learning and development, researchers need data collection tools that ameliorate issues of bias, minimize costs (e.g. time and student attention), and provide reliable data that has been validated within the disciplinary context. This study analyzes the validity and reliability of a commonly used survey, the Students’ Assessment of their Learning Gains (SALG). Data from seven Introduction to Statics courses at two universities were used to identify and confirm the latent constructs of the measure and to assess their reliability and criterion validity. Results demonstrated that four scales—active learning, concept knowledge and skills, self-efficacy, and feedback mechanisms—explain the majority of variation in the SALG survey in relation to the teaching and learning of statics. These scales were statistically validated and shown to accurately capture the criterion they represent. The primary advantage of the SALG is that it is less burdensome to students, who are only required to spend 10 to 15 min once at the end of the course to complete the survey, rather than spending more time with longer surveys or with those that require completion at multiple points in time. The tool is therefore also less disruptive to the class, which may make it more likely that faculty will be willing to include data collection efforts in their courses.more » « less
-
To broaden efforts for improving diversity, equity, and inclusion (DEI) in biomedical engineering (BME) education—a key area of emphasis is the integration of inclusive teaching practices. While BME faculty generally support these efforts, translating support into action remains challenging. This project aimed to address this need through a 3-phase inclusive teaching training, consisting of graduate students, faculty, and engineering education consultants. In Phase I, graduate students and faculty participated in a 6-week learning community on inclusive teaching (Foundational Learning). In Phase II, graduate students were paired with faculty to modify or develop new inclusive teaching materials to be integrated into a BME course (Experiential Learning). Phase III was the implementation of these materials. To assess Phases I & II, graduate student participants reflected on their experiences on the project. To assess Phase III, surveys were administered to students in IT-BME-affiliated courses as well as those taking other BME-related courses. Phases I & II: graduate students responded positively to the opportunity to engage in this inclusive teaching experiential learning opportunity. Phase III: survey results indicated that the incorporation of inclusive teaching practices in BME courses enhanced the student learning experience. The IT-BME project supported graduate students and faculty in learning about, creating, and implementing inclusive teaching practices in a collaborative and supportive environment. This project will serve to both train the next class of instructors and use their study of inclusive teaching concepts to facilitate the creation of ideas and materials that will benefit the BME curriculum and students.more » « less
-
Despite national efforts in increasing representation of minority students in STEM disciplines, disparities prevail. Hispanics account for 17.4% of the U.S. population, and nearly 20% of the youth population (21 years and below) in the U.S. is Hispanic, yet they account for just 7% of the STEM workforce. To tackle these challenges, the National Science Foundation (NSF) has granted a 5-year project – ASSURE-US, that seeks to improve undergraduate education in Engineering and Computer Science (ECS) at California State University, Fullerton. The project seeks to advance student success during the first two years of college for ECS students. Towards that goal, the project incorporates a very diverse set of approaches, such as socio-cultural and academic interventions. Multiple strategies including developing early intervention strategies in gateway STEM courses, creating a nurturing faculty-student interaction and collaborative learning environment, providing relevant, contextual-based learning experiences, integrating project-based learning with engineering design in lower-division courses, exposing lower-division students to research to sustain student interests, and helping students develop career-readiness skills. The project also seeks to develop an understanding of the personal, social, cognitive, and contextual factors contributing to student persistence in STEM learning that can be used by STEM faculty to improve their pedagogical and student-interaction approaches. This paper summarizes the major approaches the ASSURE-US project plans to implement to reduce the achievement gap and motivate ECS students to remain in the program. Preliminary findings from the first-year implementation of the project including pre- and post- data were collected and analyzed from about one hundred freshmen and sophomore ECS students regarding their academic experience in lower-division classes and their feedback for various social support events held by the ASSURE-US project during the academic year 2018-19. The preliminary results obtained during the first year of ASSURE-US project suggests that among the different ASSURE-US activities implemented in the first year, both the informal faculty-student interactions and summer research experiences helped students commit more to their major during their lower-division years. The pre-post surveys also show improvements in terms of awareness among ASSURE-US students for obtaining academic support services, understanding career options and pathways, and obtaining personal counseling services.more » « less