skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kronecker Powers of Tensors and Strassen’s Laser Method
We answer a question, posed implicitly in [P. Bürgisser et al., 1997] and explicitly in [M. Bläser, 2013], showing the border rank of the Kronecker square of the little Coppersmith-Winograd tensor is the square of the border rank of the tensor for all q>2, a negative result for complexity theory. We further show that when q>4, the analogous result holds for the Kronecker cube. In the positive direction, we enlarge the list of explicit tensors potentially useful for the laser method. We observe that a well-known tensor, the 3 × 3 determinant polynomial regarded as a tensor, det_3 ∈ C^9 ⊗ C^9 ⊗ C^9, could potentially be used in the laser method to prove the exponent of matrix multiplication is two. Because of this, we prove new upper bounds on its Waring rank and rank (both 18), border rank and Waring border rank (both 17), which, in addition to being promising for the laser method, are of interest in their own right. We discuss "skew" cousins of the little Coppersmith-Winograd tensor and indicate why they may be useful for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C^3 ⊗ C^3 ⊗ C^3.  more » « less
Award ID(s):
1814254
PAR ID:
10139846
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
11th Innovations in Theoretical Computer Science Conference (ITCS 2020)
Volume:
151
Page Range / eLocation ID:
10:1--10:28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor Tcw,q is the square of its border rank for q > 2 and that the border rank of its Kronecker cube is the cube of its border rank for q > 4. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11) and explicitly by Bl¨aser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range. In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen’s laser method, introducing a skew-symmetric version of the Coppersmith– Winograd tensor, Tskewcw,q. For q = 2, the Kronecker square of this tensor coincides with the 3 × 3 determinant polynomial, det3 ∈ C9 ⊗ C9 ⊗ C9, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two. We determine new upper bounds for the (Waring) rank and the (Waring) border rank of det3, exhibiting a strict submultiplicative behaviour for Tskewcw,2 which is promising for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3 ⊗ C3 ⊗ C3. 
    more » « less
  2. Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent omega, is a central problem in algebraic complexity theory. The best upper bounds on omega, leading to the state-of-the-art omega <= 2.37.., have been obtained via the laser method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results show limitations for these and related approaches to improve the upper bound on omega. We introduce a new and more general barrier, providing stronger limitations than in previous work. Concretely, we introduce the notion of "irreversibility" of a tensor and we prove (in some precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a starting tensor in the laser method) cannot give omega = 2. In quantitative terms, we prove that the best upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor. The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including the small and big Coppersmith - Winograd tensors, that improve limitations shown in previous work. Finally, we discuss barriers on the group-theoretic approach in terms of "monomial" irreversibility. 
    more » « less
  3. We study the algorithmic problem of multiplying large matrices that are rectangular. We prove that the method that has been used to construct the fastest algorithms for rectangular matrix multiplication cannot give optimal algorithms. In fact, we prove a precise numerical barrier for this method. Our barrier improves the previously known barriers, both in the numerical sense, as well as in its generality. We prove our result using the asymptotic spectrum of tensors. More precisely, we crucially make use of two families of real tensor parameters with special algebraic properties: the quantum functionals and the support functionals. In particular, we prove that any lower bound on the dual exponent of matrix multiplication α via the big Coppersmith–Winograd tensors cannot exceed 0.625. 
    more » « less
  4. Abstract Let$$M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$$denote the matrix multiplication tensor (and write$$M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$$), and let$$\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$$denote the determinant polynomial considered as a tensor. For a tensorT, let$$\underline {\mathbf {R}}(T)$$denote its border rank. We (i) give the first hand-checkable algebraic proof that$$\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$$, (ii) prove$$\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$$and$$\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$$, where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was$$M_{\langle 2\rangle }$$, (iii) prove$$\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$$, (iv) prove$$\underline {\mathbf {R}}(\operatorname {det}_3)=17$$, improving the previous lower bound of$$12$$, (v) prove$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$$for all$$\mathbf {n}\geq 25$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$$was known, as well as lower bounds for$$4\leq \mathbf {n}\leq 25$$, and (vi) prove$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$$for all$$\mathbf {n} \ge 18$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$$was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, calledborder apolaritydeveloped by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensorTand an integerr, in a finite number of steps, either outputs that there is no border rankrdecomposition forTor produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable whenThas a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory. 
    more » « less
  5. We determine defining equations for the set of concise tensors of minimal border rank in Cm⊗Cm⊗Cm when m = 5 and the set of concise minimal border rank 1∗-generic tensors when m = 5, 6. We solve the classical problem in algebraic complexity theory of classifying minimal border rank tensors in the special case m = 5. Our proofs utilize two recent developments: the 111-equations defined by Buczy´nska–Buczy´nski and results of Jelisiejew–Šivic on the variety of commuting matrices. We introduce a new algebraic invariant of a concise tensor, its 111-algebra, and exploit it to give a strengthening of Friedland’s normal form for 1-degenerate tensors satisfying Strassen’s equations. We use the 111-algebra to characterize wild minimal border rank tensors and classify them in C5⊗C5⊗C5. 
    more » « less