skip to main content


Title: Shape-morphing living composites
This work establishes a means to exploit genetic networks to create living synthetic composites that change shape in response to specific biochemical or physical stimuli. Baker’s yeast embedded in a hydrogel forms a responsive material where cellular proliferation leads to a controllable increase in the composite volume of up to 400%. Genetic manipulation of the yeast enables composites where volume change on exposure to l -histidine is 14× higher than volume change when exposed to d -histidine or other amino acids. By encoding an optogenetic switch into the yeast, spatiotemporally controlled shape change is induced with pulses of dim blue light (2.7 mW/cm 2 ). These living, shape-changing materials may enable sensors or medical devices that respond to highly specific cues found within a biological milieu.  more » « less
Award ID(s):
1752846 1905511 2039425 1663367
NSF-PAR ID:
10139961
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
3
ISSN:
2375-2548
Page Range / eLocation ID:
eaax8582
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Herein, a method that uses direct‐ink‐write printing to fabricate engineering living materials (ELMs) that respond by undergoing a programmed shape change in response to specific molecules is reported. Stimuli‐responsiveness is imparted to ELMs by integrating genetically engineered yeast that only proliferate in the presence of specific biomolecules. This proliferation, in turn, leads to a shape change in the ELM in response to that biomolecule. These ELMs are fabricated by coprinting bioinks that contain multiple yeast strains. Locally, cellular proliferation leads to controllable shape change of the material resulting in up to a 370% increase in volume. Globally, the printed 3D structures contain regions of material that increase in volume and regions that do not under a given set of conditions, leading to programmable changes in form in response to target amino acids and nucleotides. Finally, this printing method is applied to design a reservoir‐based drug delivery system for the on‐demand delivery of a model drug in response to a specific biomolecule.

     
    more » « less
  2. Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for posttranslationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, while the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins. 
    more » « less
  3. Abstract Experimental evolution allows the observation of change over time as laboratory populations evolve in response to novel, controlled environments. Microbial evolution experiments take advantage of cryopreservation to archive experimental populations in glycerol media, creating a frozen, living “fossil” record. Prior research with Escherichia coli has shown that cryopreservation conditions can affect cell viability and that allele frequencies across the genome can change in response to a freeze-thaw event. We expand on these observations by characterizing fitness and genomic consequences of multiple freeze-thaw cycles in diploid yeast populations. Our study system is a highly recombinant Saccharomyces cerevisiae population (SGRP-4X) which harbors standing genetic variation that cryopreservation may threaten. We also investigate the four parental isogenic strains crossed to create the SGRP-4X. We measure cell viability over 5 consecutive freeze-thaw cycles; while we find that viability increases over time in the evolved recombinant populations, we observe no such viability improvements in the parental strains. We also collect genome-wide sequence data from experimental populations initially, after one freeze-thaw, and after five freeze-thaw cycles. In the recombinant evolved populations, we find a region of significant allele frequency change on chromosome 15 containing the ALR1 gene. In the parental strains, we find little evidence for new mutations. We conclude that cryopreserving yeast populations with standing genetic variation may have both phenotypic and genomic consequences, though these same cryopreservation practices may have only small impacts on populations with little or no initial variation. 
    more » « less
  4. Abstract Background

    Double-strand break repair (DSBR) is a highly regulated process involving dozens of proteins acting in a defined order to repair a DNA lesion that is fatal for any living cell. Model organisms such asSaccharomyces cerevisiaehave been used to study the mechanisms underlying DSBR, including factors influencing its efficiency such as the presence of distinct combinations of microsatellites and endonucleases, mainly by bulk analysis of millions of cells undergoing repair of a broken chromosome. Here, we use a microfluidic device to demonstrate in yeast that DSBR may be studied at a single-cell level in a time-resolved manner, on a large number of independent lineages undergoing repair.

    Results

    We used engineeredS. cerevisiaecells in which GFP is expressed following the successful repair of a DSB induced by Cas9 or Cpf1 endonucleases, and different genetic backgrounds were screened to detect key events leading to the DSBR efficiency. Per condition, the progenies of 80–150 individual cells were analyzed over 24 h. The observed DSBR dynamics, which revealed heterogeneity of individual cell fates and their contributions to global repair efficacy, was confronted with a coupled differential equation model to obtain repair process rates. Good agreement was found between the mathematical model and experimental results at different scales, and quantitative comparisons of the different experimental conditions with image analysis of cell shape enabled the identification of three types of DSB repair events previously not recognized: high-efficacy error-free, low-efficacy error-free, and low-efficacy error-prone repair.

    Conclusions

    Our analysis paves the way to a significant advance in understanding the complex molecular mechanism of DSB repair, with potential implications beyond yeast cell biology. This multiscale and multidisciplinary approach more generally allows unique insights into the relation between in vivo microscopic processes within each cell and their impact on the population dynamics, which were inaccessible by previous approaches using molecular genetics tools alone.

     
    more » « less
  5. Abstract  
    more » « less