skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1663367

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Approaches to control the microstructure of hydrogels enable the control of cell–material interactions and the design of stimuli-responsive materials. We report a versatile approach for the synthesis of anisotropic polyacrylamide hydrogels using lyotropic chromonic liquid crystal (LCLC) templating. The orientational order of LCLCs in a mold can be patterned by controlling surface anchoring conditions, which in turn patterns the polymer network. The resulting hydrogels have tunable pore size and mechanical anisotropy. For example, the elastic moduli measured parallel and perpendicular to the LCLC order are 124.9 ± 6.4 kPa and 17.4 ± 1.1 kPa for a single composition. The resulting anisotropic hydrogels also have 30% larger swelling normal to the LCLC orientation than along the LCLC orientation. By patterning the LCLC order, this anisotropic swelling can be used to create 3D hydrogel structures. These anisotropic gels can also be functionalized with extracellular matrix (ECM) proteins and used as compliant substrata for cell culture. As an illustrative example, we show that the patterned hydrogel microstructure can be used to direct the orientation of cultured human corneal fibroblasts. This strategy to make anisotropic hydrogels has potential for enabling patternable tissue scaffolds, soft robotics, or microfluidic devices. 
    more » « less
  2. This work establishes a means to exploit genetic networks to create living synthetic composites that change shape in response to specific biochemical or physical stimuli. Baker’s yeast embedded in a hydrogel forms a responsive material where cellular proliferation leads to a controllable increase in the composite volume of up to 400%. Genetic manipulation of the yeast enables composites where volume change on exposure to l -histidine is 14× higher than volume change when exposed to d -histidine or other amino acids. By encoding an optogenetic switch into the yeast, spatiotemporally controlled shape change is induced with pulses of dim blue light (2.7 mW/cm 2 ). These living, shape-changing materials may enable sensors or medical devices that respond to highly specific cues found within a biological milieu. 
    more » « less
  3. Hydrogels which morph between programmed shapes in response to aqueous stimuli are of significant interest for biosensors and artificial muscles, among other applications. However, programming hydrogel shape change at small size scales is a significant challenge. Here we use the inherent ordering capabilities of liquid crystals to create a mechanically anisotropic hydrogel; when coupled with responsive comonomers, the mechanical anisotropy in the network guides shape change in response to the desired aqueous condition. Our synthetic strategy hinges on the use of a methacrylic chromonic liquid crystal monomer which can be combined with a non-polymerizable chromonic of similar structure to vary the magnitude of shape change while retaining liquid crystalline order. This shape change is directional due to the mechanical anisotropy of the gel, which is up to 50% stiffer along the chromonic stack direction than perpendicular. Additionally, we show that the type of stimulus to which these anisotropic gels respond can be switched by incorporating responsive, hydrophilic comonomers without destroying the nematic phase or alignment. The utility of these properties is demonstrated in polymerized microstructures which exhibit Gaussian curvature in response to high pH due to emergent ordering in a micron-sized capillary. 
    more » « less