skip to main content


Title: Gaussian Approximation of Quantization Error for Estimation from Compressed Data
We consider the statistical connection between the quantized representation of a high dimensional signal X using a random spherical code and the observation of X under an additive white Gaussian noise (AWGN). We show that given X, the conditional Wasserstein distance between its bitrate-R quantized version and its observation under AWGN of signal-to-noise ratio 2^{2R - 1} is sub-linear in the problem dimension. We then utilize this fact to connect the mean squared error (MSE) attained by an estimator based on an AWGN-corrupted version of X to the MSE attained by the same estimator when fed with its bitrate-R quantized version.  more » « less
Award ID(s):
1750362
NSF-PAR ID:
10139962
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE International Symposium on Information Theory (ISIT)
Page Range / eLocation ID:
2029 to 2033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Baseband processing algorithms often require knowledge of the noise power, signal power, or signal-to-noise ratio (SNR). In practice, these parameters are typically unknown and must be estimated. Furthermore, the mean-square error (MSE) is a desirable metric to be minimized in a variety of estimation and signal recovery algorithms. However, the MSE cannot directly be used as it depends on the true signal that is generally unknown to the estimator. In this paper, we propose novel blind estimators for the average noise power, average receive signal power, SNR, and MSE. The proposed estimators can be computed at low complexity and solely rely on the large-dimensional and sparse nature of the processed data. Our estimators can be used (i) to quickly track some of the key system parameters while avoiding additional pilot overhead, (ii) to design low-complexity nonparametric algorithms that require such quantities, and (iii) to accelerate more sophisticated estimation or recovery algorithms. We conduct a theoretical analysis of the proposed estimators for a Bernoulli complex Gaussian (BCG) prior, and we demonstrate their efficacy via synthetic experiments. We also provide three application examples that deviate from the BCG prior in millimeter-wave multi-antenna and cell-free wireless systems for which we develop nonparametric denoising algorithms that improve channel-estimation accuracy with a performance comparable to denoisers that assume perfect knowledge of the system parameters. 
    more » « less
  2. We study combinatorial auctions with interdependent valuations, where each agent i has a private signal sithat captures her private information and the valuation function of every agent depends on the entire signal profile, [Formula: see text]. The literature in economics shows that the interdependent model gives rise to strong impossibility results and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single-item auctions or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed single crossing (or variants thereof). We consider the class of submodular over signals (SOS) valuations (without imposing any single crossing-type assumption) and provide the first welfare approximation guarantees for multidimensional combinatorial auctions achieved by universally ex post incentive-compatible, individually rational mechanisms. Our main results are (i) four approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; (ii) four approximation for any combinatorial auction with multidimensional signals and separable-SOS valuations; and (iii) (k + 3) and (2 log(k) + 4) approximation for any combinatorial auction with single-dimensional signals, with k-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, d-approximate SOS, while losing a factor that depends on d.

    Funding: A. Eden was partially supported by NSF Award IIS-2007887, the European Research Council (ERC) under the European Union's Seventh Framework Programme [FP7/2007-2013]/ERC Grant Agreement 337122, by the Israel Science Foundation [Grant 317/17], and by an Amazon research award. M. Feldman received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program [Grant Agreement 866132], by the Israel Science Foundation [Grant 317/17], by an Amazon research award, and by the NSF-BSF [Grant 2020788]. The work of K. Goldner was supported partially by NSF awards DMS-1903037 and CNS-2228610 and a Shibulal Family Career Development Professorship. A. R. Karlin was supported by the NSF-CCF [Grant 1813135].

     
    more » « less
  3. Despite the substantial success of deep learning for modulation classification, models trained on a specific transmitter configuration and channel model often fail to generalize well to other scenarios with different transmitter configurations, wireless fading channels, or receiver impairments such as clock offset. This paper proposes Contrastive Learning with Self- Reconstruction called CLSR-AMC to learn good representations of signals resilient to channel changes. While contrastive loss focuses on the differences between individual modulations, the reconstruction loss captures representative features of the signal. Additionally, we develop three data augmentation operators to emulate the impact of channel and hardware impairments without exhaustive modeling of different channel profiles. We perform extensive experimentation with commonly used datasets. We show that CLSR-AMC outperforms its counterpart based on contrastive learning for the same amount of labeled data by significant average accuracy gains of 24.29%, 17.01%, and 15.97% in Additive White Gaussian Noise (AWGN), Rayleigh+AWGN, and Rician+AWGN channels, respectively. 
    more » « less
  4. Abstract A recently proposed SLOPE estimator [6] has been shown to adaptively achieve the minimax $\ell _2$ estimation rate under high-dimensional sparse linear regression models [25]. Such minimax optimality holds in the regime where the sparsity level $k$, sample size $n$ and dimension $p$ satisfy $k/p\rightarrow 0, k\log p/n\rightarrow 0$. In this paper, we characterize the estimation error of SLOPE under the complementary regime where both $k$ and $n$ scale linearly with $p$, and provide new insights into the performance of SLOPE estimators. We first derive a concentration inequality for the finite sample mean square error (MSE) of SLOPE. The quantity that MSE concentrates around takes a complicated and implicit form. With delicate analysis of the quantity, we prove that among all SLOPE estimators, LASSO is optimal for estimating $k$-sparse parameter vectors that do not have tied nonzero components in the low noise scenario. On the other hand, in the large noise scenario, the family of SLOPE estimators are sub-optimal compared with bridge regression such as the Ridge estimator. 
    more » « less
  5. Partially-observed Boolean dynamical systems (POBDS) are large and complex dynamical systems capable of being monitored through various sensors. However, time, storage, and economical constraints may impede the use of all sensors for estimation purposes. Thus, developing a procedure for selecting a subset of sensors is essential. The optimal minimum mean-square error (MMSE) POBDS state estimator is the Boolean Kalman Filter (BKF) and Smoother (BKS). Naturally, the performance of these estimators strongly depends on the choice of sensors. Given a finite subsets of sensors, for a POBDS with a finite observation space, we introduce the optimal procedure to select the best subset which leads to the smallest expected mean-square error (MSE) of the BKF over a finite horizon. The performance of the proposed sensor selection methodology is demonstrated by numerical experiments with a p53-MDM2 negative-feedback loop gene regulatory network observed through Bernoulli noise. 
    more » « less