In this work, we theoretically investigate the swimming velocity of a Taylor swimming sheet immersed in a linearly density-stratified fluid. We use a regular perturbation expansion approach to estimate the swimming velocity up to second order in wave amplitude. We divide our analysis into two regimes of low ( $$\ll O(1)$$ ) and finite Reynolds numbers. We use our solution to understand the effect of stratification on the swimming behaviour of organisms. We find that stratification significantly influences motility characteristics of the swimmer such as the swimming speed, hydrodynamic power expenditure, swimming efficiency and the induced mixing, quantified by mixing efficiency and diapycnal eddy diffusivity. We explore this dependence in detail for both low and finite Reynolds number and elucidate the fundamental insights obtained. We expect our work to shed some light on the importance of stratification in the locomotion of organisms living in density-stratified aquatic environments.
more »
« less
Motion of an arbitrarily shaped particle in a density stratified fluid
In this work, we theoretically investigate the motion of an arbitrarily shaped particle in a linear density stratified fluid with weak stratification and negligible inertia. We calculate the hydrodynamic force and torque experienced by the particle using the method of matched asymptotic expansions. We analyse our results for two classes of particles (non-skew and skew) depending on whether the particle possesses a centre of hydrodynamic stress. For both classes, we derive general expressions for the modified resistance tensors in the presence of stratification. We demonstrate the application of our results by considering some specific examples of particles settling in a direction parallel to the density gradient by considering both the limits of high ( $$Pe\gg 1$$ ) and low ( $$Pe\ll 1$$ ) Péclet numbers. We find that presence of stratification causes a slender body to rotate and settle along the broader side due to the contribution of the hydrostatic torque. Our work sheds light on the impact of stratification on the transport of arbitrarily shaped particles in density stratified environments in low-Reynolds-number regimes.
more »
« less
- PAR ID:
- 10139997
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 890
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The vertical transport of solid material in a stratified medium is fundamental to a number of environmental applications, with implications for the carbon cycle and nutrient transport in marine ecosystems. In this work, we study the diffusion-limited settling of highly porous particles in a density-stratified fluid through a combination of experiment, analysis, and numerical simulation. By delineating and appealing to the diffusion-limited regime wherein buoyancy effects due to mass adaptation dominate hydrodynamic drag, we derive a simple expression for the steady settling velocity of a sphere as a function of the density, size, and diffusivity of the solid, as well as the density gradient of the background fluid. In this regime, smaller particles settle faster, in contrast with most conventional hydrodynamic drag mechanisms. Furthermore, we outline a general mathematical framework for computing the steady settling speed of a body of arbitrary shape in this regime and compute exact results for the case of general ellipsoids. Using hydrogels as a highly porous model system, we validate the predictions with laboratory experiments in linear stratification for a wide range of parameters. Last, we show how the predictions can be applied to arbitrary slowly varying background density profiles and demonstrate how a measured particle position over time can be used to reconstruct the background density profile.more » « less
-
Coastal currents can vary dramatically in space and time, influencing advection and residence time of larvae, nutrients and contaminants in coastal environments. However, spatial and temporal variabilities of the residence time of these materials in coastal environments, such as coastal bays, are rarely quantified in ecological applications. Here, we use a particle tracking model built on top of the high-resolution hydrodynamic model described in Part 1 to simulate the dispersal of particles released in coastal bays around a key and model island study site, St. John, USVI without considering the impact of surface waves. Motivated to provide information for future coral and fish larval dispersal and contaminant spreading studies, this first step of the study toward understanding fine-scale dispersal variability in coastal bays aimed to characterize the cross-bay variability of particle residence time in the bays. Both three-dimensionally distributed (3D) and surface-trapped (surface) particles are considered. Model simulations show pronounced influences of winds, intruding river plumes, and bay orientation on the residence time. The residence times of 3D particles in many of the bays exhibit a clear seasonality, correlating with water column stratification and patterns of the bay-shelf exchange flow. When the water column is well-mixed, the exchange flow is laterally sheared, allowing a significant portion of exported 3D particles to re-enter the bays, resulting in high residence times. During stratified seasons, due to wind forcing or intruding river plumes, the exchange flows are vertically sheared, reducing the chance of 3D particles returning to the bays and their residence time in the bays. For a westward-facing bay with the axis aligned the wind, persistent wind-driven surface flows carry surface particles out of the bays quickly, resulting in a low residence time in the bay; when the bay axis is misaligned with the wind, winds can trap surface particles on the west coast in the bay and dramatically increase their residence time. The strong temporal and inter-bay variation in the duration of particles staying in the bays, and their likely role in larval and contaminant dispersal, highlights the importance of considering fine-scale variability in the coastal circulation when studying coastal ecosystems and managing coastal resources.more » « less
-
Density stratification due to temperature or salinity variations greatly influences the flow around and the sedimentation of objects such as particles, drops, bubbles, and small organisms in the atmosphere, oceans, and lakes. Density stratification hampers the vertical flow and substantially affects the sedimentation of an isolated object, the hydrodynamic interactions between a pair of objects, and the collective behavior of suspensions in various ways, depending on the relative magnitude of stratification, inertia (advection), and viscous (diffusion) effects. This review discusses these effects and their hydrodynamic mechanisms in some commonly observed fluid–particle transport phenomena in oceans and the atmosphere. Physical understanding of these mechanisms can help us better model these phenomena and, hence, predict their geophysical, engineering, ecological, and environmental implications.more » « less
-
A series of reactive molecular dynamics simulations is used to study the internal structure of incipient soot particles obtained from acetylene pyrolysis. The simulations were performed using ReaxFF potential at four different temperatures. The resulting soot particles are cataloged and analyzed to obtain statistics of their mass, volume, density, C/H ratio, number of cyclic structures, and other features. A total of 3324 incipient soot particles were analyzed in this study. Based on their structural characteristics, the incipient soot particles are classified into two classes, referred to as type 1 and type 2 incipient soot particles in this work. The radial distribution of density, cyclic (5-, 6-, or 7-member rings) structures, and C/H ratio inside the particles revealed a clear difference in the internal structure between type 1 and type 2 particles. These classes were further found to be well represented by the size of the particles, with smaller particles in type 1 and larger particles in type 2. The radial distributions of ring structures, density, and C/H ratio indicated the presence of a dense core region in type 2 particles. In contrast, no clear evidence of the presence of a core was found in type 1 particles. In type 2 incipient soot particles, the boundary between the core and shell was found to be around 50%–60% of the particle radius of gyration.more » « less
An official website of the United States government

