skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design-by-Analogy: Exploring for Analogical Inspiration With Behavior, Material, and Component-Based Structural Representation of Patent Databases
Design-by-analogy (DbA) is an important method for innovation that has gained much attention due to its history of leading to successful and novel design solutions. The method uses a repository of existing design solutions where designers can recognize and retrieve analogical inspirations. Yet, exploring for analogical inspiration has been a laborious task for designers. This work presents a computational methodology that is driven by a topic modeling technique called non-negative matrix factorization (NMF). NMF is widely used in the text mining field for its ability to discover topics within documents based on their semantic content. In the proposed methodology, NMF is performed iteratively to build hierarchical repositories of design solutions, with which designers can explore clusters of analogical stimuli. This methodology has been applied to a repository of mechanical design-related patents, processed to contain only component-, behavior-, or material-based content to test if unique and valuable attribute-based analogical inspiration can be discovered from the different representations of patent data. The hierarchical repositories have been visualized, and a case study has been conducted to test the effectiveness of the analogical retrieval process of the proposed methodology. Overall, this paper demonstrates that the exploration-based computational methodology may provide designers an enhanced control over design repositories to retrieve analogical inspiration for DbA practice.  more » « less
Award ID(s):
1663204
PAR ID:
10140048
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Volume:
19
Issue:
2
ISSN:
1530-9827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an explorative-based computational methodology to aid the analogical retrieval process in design-by-analogy practice. The computational methodology, driven by Nonnegative Matrix Factorization (NMF), iteratively builds a hierarchical repositories of design solutions within which clusters of design analogies can be explored by designers. In the work, the methodology has been applied on a large repository of mechanical design related patents, processed to contain only component-, behavior-, or material-based content, to demonstrate that unique and valuable attribute-based analogical inspiration can be discovered from different representations of patent data. For explorative purposes, the hierarchical repositories have been visualized with a three-dimensional hierarchical structure and two-dimensional bar graph structure, which can be used interchangeably for retrieving analogies. This paper demonstrates that the explorative-based computational methodology provides designers an enhanced control over design repositories, empowering them to retrieve analogical inspiration for design-by-analogy practice. 
    more » « less
  2. One means to support for design-by-analogy (DbA) in practice involves giving designers efficient access to source analogies as inspiration to solve problems. The patent database has been used for many DbA support efforts, as it is a preexisting repository of catalogued technology. Latent Semantic Analysis (LSA) has been shown to be an effective computational text processing method for extracting meaningful similarities between patents for useful functional exploration during DbA. However, this has only been shown to be useful at a small-scale (100 patents). Considering the vastness of the patent database and realistic exploration at a large scale, it is important to consider how these computational analyses change with orders of magnitude more data. We present analysis of 1,000 random mechanical patents, comparing the ability of LSA to Latent Dirichlet Allocation (LDA) to categorize patents into meaningful groups. Resulting implications for large(r) scale data mining of patents for DbA support are detailed. 
    more » « less
  3. Abstract We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics. 
    more » « less
  4. Abstract As inspirational stimuli can assist designers with achieving enhanced design outcomes, supporting the retrieval of impactful sources of inspiration is important. Existing methods facilitating this retrieval have relied mostly on semantic relationships, e.g., analogical distances. Increasingly, data-driven methods can be leveraged to represent diverse stimuli in terms of multi-modal information, enabling designers to access stimuli in terms of less explored, non-text-based relationships. Toward improved retrieval of multi-modal representations of inspirational stimuli, this work compares human-evaluated and computationally derived similarities between stimuli in terms of non-text-based visual and functional features. A human subjects study (n = 36) was conducted where similarity assessments between triplets of 3D-model parts were collected and used to construct psychological embedding spaces. Distances between unique part embeddings were used to represent similarities in terms of visual and functional features. Obtained distances were compared with computed distances between embeddings of the same stimuli generated using artificial intelligence (AI)-based deep-learning approaches. When used to assess similarity in appearance and function, these representations were found to be largely consistent, with highest agreement found when assessing pairs of stimuli with low similarity. Alignment between models was otherwise lower when identifying the same pairs of stimuli with higher levels of similarity. Importantly, qualitative data also revealed insights regarding how humans made similarity assessments, including more abstract information not captured using AI-based approaches. Toward providing inspiration to designers that considers design problems, ideas, and solutions in terms of non-text-based relationships, further exploration of how these relationships are represented and evaluated is encouraged. 
    more » « less
  5. Abstract The objective of this research is to support DfX considerations in the early phases of design. In order to do conduct DfX, designers need access to pertinent downstream knowledge that is keyed to early stage design activities and problem knowledge. Product functionality is one such “key” connection between early understanding of the design problem and component choices which dictate product performance and impact, and repositories of design knowledge are one way to archive such design knowledge. However, curation of design knowledge is often a time-consuming activity requiring expertise in product modeling. In this paper, we explore a method to automate the populating of design repositories to support the overall goal of having up-to-date repositories of product design knowledge. To do this, we mine information from an existing repository to better understand the relationships between the components, functions, and flows of products. The resulting knowledge can be applied to automate functional decompositions once a product's components have been entered and thus reliably provide that “key” between early design activities and the later, component dependent characteristics. 
    more » « less