skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: All-FIT: Allele-Frequency-based Imputation of Tumor Purity from High-Depth Sequencing Data
Abstract Motivation Clinical sequencing aims to identify somatic mutations in cancer cells for accurate diagnosis and treatment. However, most widely used clinical assays lack patient-matched control DNA and additional analysis is needed to distinguish somatic and unfiltered germline variants. Such computational analyses require accurate assessment of tumor cell content in individual specimens. Histological estimates often do not corroborate with results from computational methods that are primarily designed for normal-tumor matched data and can be confounded by genomic heterogeneity and presence of sub-clonal mutations. Methods All-FIT is an iterative weighted least square method to estimate specimen tumor purity based on the allele frequencies of variants detected in high-depth, targeted, clinical sequencing data. Results Using simulated and clinical data, we demonstrate All-FIT’s accuracy and improved performance against leading computational approaches, highlighting the importance of interpreting purity estimates based on expected biology of tumors. Availability and Implementation Freely available at http://software.khiabanian-lab.org. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1852215
PAR ID:
10140183
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation We propose Meltos, a novel computational framework to address the challenging problem of building tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolutionary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree. Meltos utilizes multiple genomic read signals for potential SV breakpoints in whole genome sequencing data and proposes a probabilistic formulation for estimating variant allele fractions (VAFs) of SV events. Results In order to assess the ability of Meltos to correctly refine SNV trees with SV information, we tested Meltos on two simulated datasets with five genomes in both. We also assessed Meltos on two real cancer datasets. We tested Meltos on multiple samples from a liposarcoma tumor and on a multi-sample breast cancer data (Yates et al., 2015), where the authors provide validated structural variation events together with deep, targeted sequencing for a collection of somatic SNVs. We show Meltos has the ability to place high confidence validated SV calls on a refined tumor phylogeny tree. We also showed the flexibility of Meltos to either estimate VAFs directly from genomic data or to use copy number corrected estimates. Availability and implementation Meltos is available at https://github.com/ih-lab/Meltos. Contact imh2003@med.cornell.edu Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Background Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor’s clonal composition. Results To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our integration approach provides a higher resolution view of tumor evolution than previous studies. Conclusion PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by integrating SNV and CNA clones inferred using existing methods. 
    more » « less
  3. Abstract Motivation In recent years, the well-known Infinite Sites Assumption (ISA) has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging Single-Cell Sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. While there exist established computational methods that infer phylogenies with mutation losses, there remain some advancements to be made. Results We present SASC (Simulated Annealing Single-Cell inference): a new and robust approach based on simulated annealing for the inference of cancer progression from SCS data sets. In particular, we introduce an extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves high levels of accuracy when tested on both simulated and real data sets and in comparison with some other available methods. Availability The Simulated Annealing Single-Cell inference (SASC) tool is open source and available at https://github.com/sciccolella/sasc. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. null (Ed.)
    Abstract Motivation Cancer is caused by the accumulation of somatic mutations that lead to the formation of distinct populations of cells, called clones. The resulting clonal architecture is the main cause of relapse and resistance to treatment. With decreasing costs in DNA sequencing technology, rich cancer genomics datasets with many spatial sequencing samples are becoming increasingly available, enabling the inference of high-resolution tumor clones and prevalences across different spatial coordinates. While temporal and phylogenetic aspects of tumor evolution, such as clonal evolution over time and clonal response to treatment, are commonly visualized in various clonal evolution diagrams, visual analytics methods that reveal the spatial clonal architecture are missing. Results This article introduces ClonArch, a web-based tool to interactively visualize the phylogenetic tree and spatial distribution of clones in a single tumor mass. ClonArch uses the marching squares algorithm to draw closed boundaries representing the presence of clones in a real or simulated tumor. ClonArch enables researchers to examine the spatial clonal architecture of a subset of relevant mutations at different prevalence thresholds and across multiple phylogenetic trees. In addition to simulated tumors with varying number of biopsies, we demonstrate the use of ClonArch on a hepatocellular carcinoma tumor with ∼280 sequencing biopsies. ClonArch provides an automated way to interactively examine the spatial clonal architecture of a tumor, facilitating clinical and biological interpretations of the spatial aspects of intra-tumor heterogeneity. Availability and implementation https://github.com/elkebir-group/ClonArch. 
    more » « less
  5. Abstract Motivation Somatic mutations result from processes related to DNA replication or environmental/lifestyle exposures. Knowing the activity of mutational processes in a tumor can inform personalized therapies, early detection, and understanding of tumorigenesis. Computational methods have revealed 30 validated signatures of mutational processes active in human cancers, where each signature is a pattern of single base substitutions. However, half of these signatures have no known etiology, and some similar signatures have distinct etiologies, making patterns of mutation signature activity hard to interpret. Existing mutation signature detection methods do not consider tumor-level clinical/demographic (e.g. smoking history) or molecular features (e.g. inactivations to DNA damage repair genes). Results To begin to address these challenges, we present the Tumor Covariate Signature Model (TCSM), the first method to directly model the effect of observed tumor-level covariates on mutation signatures. To this end, our model uses methods from Bayesian topic modeling to change the prior distribution on signature exposure conditioned on a tumor’s observed covariates. We also introduce methods for imputing covariates in held-out data and for evaluating the statistical significance of signature-covariate associations. On simulated and real data, we find that TCSM outperforms both non-negative matrix factorization and topic modeling-based approaches, particularly in recovering the ground truth exposure to similar signatures. We then use TCSM to discover five mutation signatures in breast cancer and predict homologous recombination repair deficiency in held-out tumors. We also discover four signatures in a combined melanoma and lung cancer cohort—using cancer type as a covariate—and provide statistical evidence to support earlier claims that three lung cancers from The Cancer Genome Atlas are misdiagnosed metastatic melanomas. Availability and implementation TCSM is implemented in Python 3 and available at https://github.com/lrgr/tcsm, along with a data workflow for reproducing the experiments in the paper. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less