skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symmetry of generalized rivalry network models determines patterns of interocular grouping in four-location binocular rivalry
Previously, symmetry of network models has been proposed to account for interocular grouping during binocular rivalry. Here, we construct and analyze generalized rivalry network models with different types of symmetry (based on different kinds of excitatory coupling) to derive predictions of possible perceptual states in 12 experiments with four retinal locations. Percepts in binocular rivalry involving more than three locations have not been empirically investigated due to the difficulty in reporting simultaneous percepts at multiple locations. Here, we develop a novel reporting procedure in which the stimulus disappears when the subject is cued to report the simultaneously perceived colors in all four retinal locations. This procedure ensures that simultaneous rather than sequential percepts are reported. The procedure was applied in 12 experiments with six binocular rivalry stimulus configurations, all consisting of dichoptic displays of red and green squares at four locations. We call configurations with an even or odd number of red squares even or odd configurations, respectively. In experiments using even stimulus configurations, we found that even percepts were more frequently observed than odd percepts, whereas in experiments using odd stimulus configurations even and odd percepts were observed with equal probability. The generalized rivalry network models in which couplings depend on stimulus features and spatial configurations was in better agreement with the empirical results. We conclude that the excitatory coupling strength in the horizontal and vertical configurations are different and the coupling strengths between the same color and between different colors are different. NEW & NOTEWORTHY Wilson network models of interocular groupings during binocular rivalry are constructed by considering features that indicate equal coupling strengths. Network symmetries, based on equal couplings, predict percepts. For a four-location rivalry experiment with red or green squares at each location, we analyze different possible Wilson networks. In our experiments we develop a novel reporting procedure and show that networks in which stimulus features and spatial configurations are distinguished best agree with experiments.  more » « less
Award ID(s):
1800406
PAR ID:
10140222
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Neurophysiology
Volume:
122
Issue:
5
ISSN:
0022-3077
Page Range / eLocation ID:
1989 to 1999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive-exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to “pulse” at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential “Baroreceptor Hypothesis” predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Further, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations. 
    more » « less
  2. A bstract In the electroweak sector of the Standard Model, CP violation arises through a very particular interplay between the three quark generations, as described by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism and the single Jarlskog invariant J 4 . Once generalized to the Standard Model Effective Field Theory (SMEFT), this peculiar pattern gets modified by higher-dimensional operators, whose associated Wilson coefficients are usually split into CP-even and odd parts. However, CP violation at dimension four, i.e., at the lowest order in the EFT expansion, blurs this distinction: any Wilson coefficient can interfere with J 4 and mediate CP violation. In this paper, we study such interferences at first order in the SMEFT expansion, 𝒪(1 / Λ 2 ), and we capture their associated parameter space via a set of 1551 linear CP-odd flavor invariants. This construction describes both new, genuinely CP-violating quantities as well as the interference between J 4 and CP-conserving ones. We call this latter possibility opportunistic CP violation . Relying on an appropriate extension of the matrix rank to Taylor expansions, which we dub Taylor rank , we define a procedure to organize the invariants in terms of their magnitude, so as to retain only the relevant ones at a given precision. We explore how this characterization changes when different assumptions are made on the flavor structure of the SMEFT coefficients. Interestingly, some of the CP-odd invariants turn out to be less suppressed than J 4 , even when they capture opportunistic CPV, demonstrating that CP-violation in the SM, at dimension 4, is accidentally small. 
    more » « less
  3. Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. This study quantifies whether and how the brain selectively encodes stimulus features about scene identity in complex naturalistic environments. While a wealth of previous work has dug into the static and dynamic features of the population code in retinal ganglion cells, less is known about how populations form both flexible and reliable encoding in natural moving scenes. We record from the larval salamander retina responding to five different natural movies, over many repeats, and use these data to characterize the population code in terms of single-cell fluctuations in rate and pairwise couplings between cells. Decomposing the population code into independent and cell-cell interactions reveals how broad scene structure is encoded in the retinal output. while the single-cell activity adapts to different stimuli, the population structure captured in the sparse, strong couplings is consistent across natural movies as well as synthetic stimuli. We show that these interactions contribute to encoding scene identity. We also demonstrate that this structure likely arises in part from shared bipolar cell input as well as from gap junctions between retinal ganglion cells and amacrine cells. 
    more » « less
  4. Precision measurements of anomalous quartic couplings of electroweak gauge bosons allow us to search for deviations of the Standard Model predictions and signals of new physics. Here, we obtain the constraints on anomalous quartic gauge couplings using the presently available data on the production of gauge-boson pairs via vector boson fusion. We work in the Higgs effective theory framework and obtain the present bounds on the operator’s Wilson coefficients. We show that the combination of different datasets breaks the degeneracies in analysis with more than one nonvanishing Wilson coefficient. Anomalous quartic gauge boson couplings lead to rapidly growing cross sections and we discuss the impact of a unitarization procedure on the attainable limits. 
    more » « less
  5. Abstract Magic squares have been extremely useful and popular in combinatorics and statistics. One generalization of magic squares ismagic rectangleswhich are useful for designing experiments in statistics. A necessary and sufficient condition for the existence of magic rectangles restricts the number of rows and columns to be either both odd or both even. In this paper, we generalize magic rectangles to even by oddnearly magic rectangles. We also prove necessary and sufficient conditions for the existence of a nearly magic rectangle, and construct one for each parameter set for which they exist. 
    more » « less