skip to main content


This content will become publicly available on September 18, 2024

Title: Corpus-Based Relation Extraction by Identifying and Refining Relation Patterns
Automated relation extraction without extensive human-annotated data is a crucial yet challenging task in text mining. Existing studies typically use lexical patterns to label a small set of high-precision relation triples and then employ distributional methods to enhance detection recall. This precision-first approach works well for common relation types but struggles with unconventional and infrequent ones. In this work, we propose a recall-first approach that first leverages high-recall patterns (e.g., a per:siblings relation normally requires both the head and tail entities in the person type) to provide initial candidate relation triples with weak labels and then clusters these candidate relation triples in a latent spherical space to extract high-quality weak supervisions. Specifically, we present a novel framework, RCLUS, where each relation triple is represented by its head/tail entity type and the shortest dependency path between the entity mentions. RCLUS first applies high-recall patterns to narrow down each relation type’s candidate space. Then, it embeds candidate relation triples in a latent space and conducts spherical clustering to further filter out noisy candidates and identify high-quality weakly-labeled triples. Finally, RCLUS leverages the above-obtained triples to prompt-tune a pre-trained language model and utilizes it for improved extraction coverage. We conduct extensive experiments on three public datasets and demonstrate that RCLUS outperforms the weakly-supervised baselines by a large margin and achieves generally better performance than fully-supervised methods in low-resource settings.  more » « less
Award ID(s):
1956151 1741317 1704532
NSF-PAR ID:
10467075
Author(s) / Creator(s):
Editor(s):
Proc. 2023 European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 
Publisher / Repository:
Springer
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
["Corpus-Based Relation Extraction, Mining Relation Patterns"]
Format(s):
Medium: X
Location:
Torino, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge graphs (KGs) are of great importance in various artificial intelligence systems, such as question answering, relation extraction, and recommendation. Nevertheless, most real-world KGs are highly incomplete, with many missing relations between entities. To discover new triples (i.e., head entity, relation, tail entity), many KG completion algorithms have been proposed in recent years. However, a vast majority of existing studies often require a large number of training triples for each relation, which contradicts the fact that the frequency distribution of relations in KGs often follows a long tail distribution, meaning a majority of relations have only very few triples. Meanwhile, since most existing large-scale KGs are constructed automatically by extracting information from crowd-sourcing data using heuristic algorithms, plenty of errors could be inevitably incorporated due to the lack of human verification, which greatly reduces the performance for KG completion. To tackle the aforementioned issues, in this paper, we study a novel problem of error-aware few-shot KG completion and present a principled KG completion framework REFORM. Specifically, we formulate the problem under the few-shot learning framework, and our goal is to accumulate meta-knowledge across different meta-tasks and generalize the accumulated knowledge to the meta-test task for error-aware few-shot KG completion. To address the associated challenges resulting from insufficient training samples and inevitable errors, we propose three essential modules neighbor encoder, cross-relation aggregation, and error mitigation in each meta-task. Extensive experiments on three widely used KG datasets demonstrate the superiority of the proposed framework REFORM over competitive baseline methods. 
    more » « less
  2. Extracting relations from text corpora is an important task with wide applications. However, it becomes particularly challenging when focusing on weakly-supervised relation extraction, that is, utilizing a few relation instances (i.e., a pair of entities and their relation) as seeds to extract from corpora more instances of the same relation. Existing distributional approaches leverage the corpuslevel co-occurrence statistics of entities to predict their relations, and require a large number of labeled instances to learn effective relation classiffers. Alternatively, pattern-based approaches perform boostrapping or apply neural networks to model the local contexts, but still rely on a large number of labeled instances to build reliable models. In this paper, we study the integration of distributional and pattern-based methods in a weakly-supervised setting such that the two kinds of methods can provide complementary supervision for each other to build an effective, uniffed model. We propose a novel co-training framework with a distributional module and a pattern module. During training, the distributional module helps the pattern module discriminate between the informative patterns and other patterns, and the pattern module generates some highly-conffdent instances to improve the distributional module. The whole framework can be effectively optimized by iterating between improving the pattern module and updating the distributional module. We conduct experiments on two tasks: knowledge base completion with text corpora and corpus-level relation extraction. Experimental results prove the effectiveness of our framework over many competitive baselines. 
    more » « less
  3. Knowledge graphs (KGs) capture knowledge in the form of head– relation–tail triples and are a crucial component in many AI systems. There are two important reasoning tasks on KGs: (1) single-hop knowledge graph completion, which involves predicting individual links in the KG; and (2), multi-hop reasoning, where the goal is to predict which KG entities satisfy a given logical query. Embedding-based methods solve both tasks by first computing an embedding for each entity and relation, then using them to form predictions. However, existing scalable KG embedding frameworks only support single-hop knowledge graph completion and cannot be applied to the more challenging multi-hop reasoning task. Here we present Scalable Multi-hOp REasoning (SMORE), the first general framework for both single-hop and multi-hop reasoning in KGs. Using a single machine SMORE can perform multi-hop reasoning in Freebase KG (86M entities, 338M edges), which is 1,500× larger than previously considered KGs. The key to SMORE’s runtime performance is a novel bidirectional rejection sampling that achieves a square root reduction of the complexity of online training data generation. Furthermore, SMORE exploits asynchronous scheduling, overlapping CPU-based data sampling, GPU-based embedding computation, and frequent CPU–GPU IO. SMORE increases throughput (i.e., training speed) over prior multi-hop KG frameworks by 2.2× with minimal GPU memory requirements (2GB for training 400-dim embeddings on 86M-node Freebase) and achieves near linear speed-up with the number of GPUs. Moreover, on the simpler single-hop knowledge graph completion task SMORE achieves comparable or even better runtime performance to state-of-the-art frameworks on both single GPU and multi-GPU settings. 
    more » « less
  4. Purpose

    This study aims to evaluate a method of building a biomedical knowledge graph (KG).

    Design/methodology/approach

    This research first constructs a COVID-19 KG on the COVID-19 Open Research Data Set, covering information over six categories (i.e. disease, drug, gene, species, therapy and symptom). The construction used open-source tools to extract entities, relations and triples. Then, the COVID-19 KG is evaluated on three data-quality dimensions: correctness, relatedness and comprehensiveness, using a semiautomatic approach. Finally, this study assesses the application of the KG by building a question answering (Q&A) system. Five queries regarding COVID-19 genomes, symptoms, transmissions and therapeutics were submitted to the system and the results were analyzed.

    Findings

    With current extraction tools, the quality of the KG is moderate and difficult to improve, unless more efforts are made to improve the tools for entity extraction, relation extraction and others. This study finds that comprehensiveness and relatedness positively correlate with the data size. Furthermore, the results indicate the performances of the Q&A systems built on the larger-scale KGs are better than the smaller ones for most queries, proving the importance of relatedness and comprehensiveness to ensure the usefulness of the KG.

    Originality/value

    The KG construction process, data-quality-based and application-based evaluations discussed in this paper provide valuable references for KG researchers and practitioners to build high-quality domain-specific knowledge discovery systems.

     
    more » « less
  5. Recent literature focuses on utilizing the entity information in the sentence-level relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from over-fitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CoRE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CoRE method is model-agnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstrate that our CoRE yields significant gains on both effectiveness and generalization for RE. The source code is provided at: https://github.com/vanoracai/CoRE. 
    more » « less