We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum [Formula: see text] satisfies [Formula: see text] or [Formula: see text] or where the RCE absolute vorticity [Formula: see text] satisfies [Formula: see text]; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude [Formula: see text], which needs not equal the RCE forcing maximum latitude [Formula: see text]. Whatever the value of [Formula: see text], we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts [Formula: see text], always placing it poleward of [Formula: see text]. As [Formula: see text] is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both [Formula: see text] and [Formula: see text] become increasingly displaced poleward of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing.
more »
« less
Axisymmetric Hadley Cell Theory with a Fixed Tropopause Temperature Rather than Height
Axisymmetric Hadley cell theory has traditionally assumed that the tropopause height ( Ht) is uniform and unchanged from its radiative–convective equilibrium (RCE) value by the cells’ emergence. Recent studies suggest that the tropopause temperature ( Tt), not height, is nearly invariant in RCE, which would require appreciable meridional variations in Ht. Here, we derive modified expressions of axisymmetric theory by assuming a fixed Ttand compare the results to their fixed- Htcounterparts. If Ttand the depth-averaged lapse rate are meridionally uniform, then at each latitude Htvaries linearly with the local surface temperature, altering the diagnosed gradient-balanced zonal wind at the tropopause appreciably (up to tens of meters per second) but the minimal Hadley cell extent predicted by Hide’s theorem only weakly (≲1°) under standard annual-mean and solsticial forcings. A uniform Ttalters the thermal field required to generate an angular-momentum-conserving Hadley circulation, but these changes and the resulting changes to the equal-area model solutions for the cell edges again are modest (<10%). In numerical simulations of latitude-by-latitude RCE under annual-mean forcing using a single-column model, assuming a uniform Ttis reasonably accurate up to the midlatitudes, and the Hide’s theorem metrics are again qualitatively insensitive to the tropopause definition. However imperfectly axisymmetric theory portrays the Hadley cells in Earth’s macroturbulent atmosphere, evidently its treatment of the tropopause is not an important error source.
more »
« less
- Award ID(s):
- 1912673
- PAR ID:
- 10140601
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 77
- Issue:
- 4
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- p. 1279-1294
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The degree of Hadley cell expansion under global warming will have a substantial impact on changing rainfall patterns. Most previous studies have quantified changes in total tropical width, focused on the Southern Hemisphere Hadley cell or considered each hemisphere's response to a multitude of anthropogenic forcings. It is shown here that under exclusive CO2forcing, climate models predict twice as much Hadley cell expansion in the Southern Hemisphere relative to the Northern Hemisphere. This asymmetry is present in the annual mean expansion and all seasons except boreal autumn. It is robust across models and Hadley cell edge definitions. It is surprising since asymmetries in simulated Hadley cell expansion are typically attributed to stratospheric ozone depletion or aerosol emission. Its primary cause is smaller sensitivity of the Northern Hemisphere Hadley cell to static stability changes. The pattern of sea surface warming and the CO2direct radiative effect also contribute to the asymmetry.more » « less
-
Radiative and Dynamic Controls on Atmospheric Heat Transport over Different Planetary Rotation Ratesnull (Ed.)Abstract Atmospheric heat transport is an important piece of our climate system, yet we lack a complete theory for its magnitude or changes. Atmospheric dynamics and radiation play different roles in controlling the total atmospheric heat transport (AHT) and its partitioning into components associated with eddies and mean meridional circulations. This work focuses on two specific controls: a radiative one, namely atmospheric radiative temperature tendencies, and a dynamic one, the planetary rotation rate. We use an idealized gray radiation model to employ a novel framework to lock the radiative temperature tendency and total AHT to climatological values, even while the rotation rate is varied. This setup allows for a systematic study of the effects of radiative tendency and rotation rate on AHT. We find that rotation rate controls the latitudinal extent of the Hadley cell and the heat transport efficiency of eddies. Both the rotation rate and radiative tendency influence the strength of the Hadley cell and the strength of equator–pole energy differences that are important for AHT by eddies. These two controls do not always operate independently and can reinforce or dampen each other. In addition, we examine how individual AHT components, which vary with latitude, sum to a total AHT that varies smoothly with latitude. At slow rotation rates the mean meridional circulation is most important in ensuring total AHT varies smoothly with latitude, while eddies are most important at rotation rates similar to, and faster than, those of Earth.more » « less
-
null (Ed.)Abstract How far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets the minimum extent of a large-scale circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circulation absent. We explicitly simulate this latitude-by-latitude radiative-convective equilibrium (RCE) state. Its depth-averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sin φ , where φ is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under solsticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave according to this scaling.more » « less
-
Abstract Changes in midlatitude clouds as a result of shifts in general circulation patterns are widely thought to be a potential source of radiative feedbacks onto the climate system. Previous work has suggested that two general circulation shifts anticipated to occur in a warming climate, poleward shifts in the midlatitude jet streams and a poleward expansion of the Hadley circulation, are associated with differing effects on midlatitude clouds. This study examines two dynamical cloud‐controlling factors, mid‐tropospheric vertical velocity, and the estimated inversion strength (EIS) of the marine boundary layer temperature inversion, to explain why poleward shifts in the Southern Hemisphere midlatitude jet and Hadley cell edge have varying shortwave cloud‐radiative responses at midlatitudes. Changes in vertical velocity and EIS occur further equatorward for poleward shifts in the Hadley cell edge than they do for poleward shifts of the midlatitude jet. Because the sensitivity of shortwave cloud radiative effects (SWCRE) to variations in vertical velocity and EIS is a function of latitude, the SWCRE anomalies associated with jet and Hadley cell shifts differ. The dynamical changes associated with a poleward jet shift occur further poleward in a regime where the sensitivities of SWCRE to changes in vertical velocity and EIS balance, leading to a near‐net zero change in SWCRE in midlatitudes with a poleward jet shift. Conversely, the dynamical changes associated with Hadley cell expansion occur further equatorward at a latitude where the sensitivity of SWCRE is more strongly associated with changes in mid‐tropospheric vertical velocity, leading to a net shortwave cloud radiative warming effect in midlatitudes.more » « less
An official website of the United States government
