We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum [Formula: see text] satisfies [Formula: see text] or [Formula: see text] or where the RCE absolute vorticity [Formula: see text] satisfies [Formula: see text]; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude [Formula: see text], which needs not equal the RCE forcing maximum latitude [Formula: see text]. Whatever the value of [Formula: see text], we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts [Formula: see text], always placing it poleward of [Formula: see text]. As [Formula: see text] is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both [Formula: see text] and [Formula: see text] become increasingly displaced poleward of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing.
more »
« less
Solsticial Hadley Cell ascending edge theory from supercriticality
Abstract How far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets the minimum extent of a large-scale circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circulation absent. We explicitly simulate this latitude-by-latitude radiative-convective equilibrium (RCE) state. Its depth-averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sin φ , where φ is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under solsticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave according to this scaling.
more »
« less
- Award ID(s):
- 1912673
- PAR ID:
- 10274671
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- ISSN:
- 0022-4928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent summer surface air temperature (SAT) variations over Central East Asia (CEA) have been influenced by greenhouse gas and aerosol forcing since 1960. But how CEA SAT responds to contrasting changes in Asian, and European and North American aerosol sources remains unclear. By analyzing observations and model simulations, here we show that aerosol‐forced summer SAT changes over CEA since 1960 come mostly from the effects of aerosols outside Asia, with relatively small influences from Asian aerosols. Unlike Europe, where direct and indirect aerosol effects on surface solar radiation drive the SAT long‐term trend and decadal variations, over CEA atmospheric circulation response to aerosols outside Asia plays an important role. Aerosol‐forced anomalous low‐level low pressure in mid‐latitude Eurasia may influence the SAT anomalies downstream over mid‐latitude Asia, including a warm anomaly around CEA. The results suggest that caution is needed in attributing SAT changes around CEA to anthropogenic aerosols from Asia.more » « less
-
Abstract The global paleomonsoon concept predicts an antiphase response of monsoon rainfall in the Northern and Southern Hemispheres at timescales where there is asymmetric solar forcing and/or asymmetric hemispheric temperature changes. However, as different monsoon systems have different sensitivities to local, regional, and global forcing, rainfall response may vary regionally, particularly during large global climatic changes such as the last deglaciation where warming occurred in both hemispheres. Despite its role as a key Southern Hemisphere counterpart to the Arabian and Indian summer monsoons, the behavior of the summer monsoon in the Southern Hemisphere of the Indian Ocean during the last deglaciation is unknown. Therefore, we present a new high‐resolution, precisely dated, and replicated speleothem stable isotope record from Tsimanampesotse National Park in southwest Madagascar that covers the last deglaciation. We show that speleothem growth phases respond largely to movements of the Southern Hemisphere summer Hadley circulation (summer extent of the tropical rainbelt/mean Intertropical Convergence Zone location), with some contribution from sea surface temperature changes at key times, such as during the Bølling‐Allerød. In contrast, speleothem δ18Ο responds primarily to sea surface temperature, in particular the location of the deep atmospheric convection isotherm, while summer Hadley circulation changes take a secondary role. Separating the varying influences of temperature and atmospheric circulation in controlling southwest Madagascan rainfall is critical to understanding rainfall variability in both the past and the future.more » « less
-
Abstract This study investigates the impact of the lower‐thermospheric winter‐to‐summer circulation on the thermosphere's thermal structure and meridional circulation. Using NCAR TIE‐GCM, we compare simulations with and without the lower‐thermospheric circulation, finding that its inclusion enhances summer‐to‐winter thermospheric circulation by 40% in the summer hemisphere but decelerates it in the winter thermosphere. Meanwhile, vertical wind exhibits stronger upward motion poleward of latitude above hPa (174 km) when lower‐thermospheric circulation is incorporated. This dynamic coupling functions as an atmospheric “gear mechanism,” accelerating momentum and energy transfer to higher altitudes. Including lower‐thermospheric circulation improves agreement between the nudged run and NRLMSIS 2.1 in intra‐annual variability (IAV) of mass density. This suggests lower‐thermospheric circulation is a key factor in modulating IAV in the coupled thermosphere‐ionosphere system. This study reveals a new coupling mechanism between the lower atmosphere, thermosphere, and ionosphere, with significant implications for understanding upper‐atmospheric dynamics and improving space weather models.more » « less
-
Recent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation.more » « less
An official website of the United States government

