Title: Axisymmetric Constraints on Cross-Equatorial Hadley Cell Extent
We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum [Formula: see text] satisfies [Formula: see text] or [Formula: see text] or where the RCE absolute vorticity [Formula: see text] satisfies [Formula: see text]; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude [Formula: see text], which needs not equal the RCE forcing maximum latitude [Formula: see text]. Whatever the value of [Formula: see text], we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts [Formula: see text], always placing it poleward of [Formula: see text]. As [Formula: see text] is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both [Formula: see text] and [Formula: see text] become increasingly displaced poleward of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing. more »« less
Hill, Spencer A.; Bordoni, Simona; Mitchell, Jonathan L.
(, Journal of the Atmospheric Sciences)
null
(Ed.)
Abstract How far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets the minimum extent of a large-scale circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circulation absent. We explicitly simulate this latitude-by-latitude radiative-convective equilibrium (RCE) state. Its depth-averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sin φ , where φ is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under solsticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave according to this scaling.
Hill, Spencer A.; Bordoni, Simona; Mitchell, Jonathan L.
(, Journal of the Atmospheric Sciences)
Axisymmetric Hadley cell theory has traditionally assumed that the tropopause height ( Ht) is uniform and unchanged from its radiative–convective equilibrium (RCE) value by the cells’ emergence. Recent studies suggest that the tropopause temperature ( Tt), not height, is nearly invariant in RCE, which would require appreciable meridional variations in Ht. Here, we derive modified expressions of axisymmetric theory by assuming a fixed Ttand compare the results to their fixed- Htcounterparts. If Ttand the depth-averaged lapse rate are meridionally uniform, then at each latitude Htvaries linearly with the local surface temperature, altering the diagnosed gradient-balanced zonal wind at the tropopause appreciably (up to tens of meters per second) but the minimal Hadley cell extent predicted by Hide’s theorem only weakly (≲1°) under standard annual-mean and solsticial forcings. A uniform Ttalters the thermal field required to generate an angular-momentum-conserving Hadley circulation, but these changes and the resulting changes to the equal-area model solutions for the cell edges again are modest (<10%). In numerical simulations of latitude-by-latitude RCE under annual-mean forcing using a single-column model, assuming a uniform Ttis reasonably accurate up to the midlatitudes, and the Hide’s theorem metrics are again qualitatively insensitive to the tropopause definition. However imperfectly axisymmetric theory portrays the Hadley cells in Earth’s macroturbulent atmosphere, evidently its treatment of the tropopause is not an important error source.
Bonan, David B.; Siler, Nicholas; Roe, Gerard H.; Armour, Kyle C.
(, Journal of Climate)
Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes.
Abstract. Anthropogenic aerosols (AAs) induce global and regionaltropospheric circulation adjustments due to the radiative energyperturbations. The overall cooling effects of AA, which mask a portion ofglobal warming, have been the subject of many studies but still have largeuncertainty. The interhemispheric contrast in AA forcing has also beendemonstrated to induce a major shift in atmospheric circulation. However,the zonal redistribution of AA emissions since start of the 20th century, with anotable decline in the Western Hemisphere (North America and Europe) and acontinuous increase in the Eastern Hemisphere (South Asia and East Asia),has received less attention. Here we utilize four sets of single-model initial-condition large-ensemblesimulations with various combinations of external forcings to quantify theradiative and circulation responses due to the spatial redistribution of AAforcing during 1980–2020. In particular, we focus on the distinct climateresponses due to fossil-fuel-related (FF) aerosols emitted from the Western Hemisphere (WH) versus the Eastern Hemisphere (EH). The zonal (west to east) redistribution of FF aerosol emission since the1980s leads to a weakening negative radiative forcing over the WHmid-to-high latitudes and an enhancing negative radiative forcing over theEH at lower latitudes. Overall, the FF aerosol leads to a northward shift of the Hadley cell and an equatorward shift of the Northern Hemisphere (NH) jet stream. Here, two sets of regional FF simulations (Fix_EastFF1920and Fix_WestFF1920) are performed to separate the roles ofzonally asymmetric aerosol forcings. We find that the WH aerosol forcing,located in the extratropics, dominates the northward shift of the Hadley cell by inducing an interhemispheric imbalance in radiative forcing. On the other hand, the EH aerosol forcing, located closer to the tropics, dominates the equatorward shift of the NH jet stream. The consistent relationship between the jet stream shift and the top-of-atmosphere net solar flux (FSNTOA) gradient suggests that the latter serves as a rule-of-thumb guidance for the expected shift of the NH jet stream. The surface effect of EH aerosol forcing (mainly from low- to midlatitudes)is confined more locally and only induces weak warming over the northeastern Pacific and North Atlantic. In contrast, the WH aerosol reduction leads to a large-scale warming over NH mid-to-high latitudes that largely offsets the cooling over the northeastern Pacific due to EH aerosols. The simulated competing roles of regional aerosol forcings in drivingatmospheric circulation and surface temperature responses during the recentdecades highlight the importance of considering zonally asymmetric forcings(west to east) and also their meridional locations within the NH (tropicalvs. extratropical).
Zhang, Pengfei; Chen, Gang; Ming, Yi
(, Journal of Climate)
null
(Ed.)
Abstract While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO 2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO 2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.
Hill, Spencer A., Bordoni, Simona, and Mitchell, Jonathan L. Axisymmetric Constraints on Cross-Equatorial Hadley Cell Extent. Journal of the Atmospheric Sciences 76.6 Web. doi:10.1175/JAS-D-18-0306.1.
Hill, Spencer A., Bordoni, Simona, & Mitchell, Jonathan L. Axisymmetric Constraints on Cross-Equatorial Hadley Cell Extent. Journal of the Atmospheric Sciences, 76 (6). https://doi.org/10.1175/JAS-D-18-0306.1
Hill, Spencer A., Bordoni, Simona, and Mitchell, Jonathan L.
"Axisymmetric Constraints on Cross-Equatorial Hadley Cell Extent". Journal of the Atmospheric Sciences 76 (6). Country unknown/Code not available: American Meteorological Society. https://doi.org/10.1175/JAS-D-18-0306.1.https://par.nsf.gov/biblio/10103617.
@article{osti_10103617,
place = {Country unknown/Code not available},
title = {Axisymmetric Constraints on Cross-Equatorial Hadley Cell Extent},
url = {https://par.nsf.gov/biblio/10103617},
DOI = {10.1175/JAS-D-18-0306.1},
abstractNote = {We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum [Formula: see text] satisfies [Formula: see text] or [Formula: see text] or where the RCE absolute vorticity [Formula: see text] satisfies [Formula: see text]; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude [Formula: see text], which needs not equal the RCE forcing maximum latitude [Formula: see text]. Whatever the value of [Formula: see text], we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts [Formula: see text], always placing it poleward of [Formula: see text]. As [Formula: see text] is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both [Formula: see text] and [Formula: see text] become increasingly displaced poleward of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing.},
journal = {Journal of the Atmospheric Sciences},
volume = {76},
number = {6},
publisher = {American Meteorological Society},
author = {Hill, Spencer A. and Bordoni, Simona and Mitchell, Jonathan L.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.