skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Melt-Spun Nanocomposite Fibers Reinforced with Aligned Tunicate Nanocrystals
The fabrication of nanocomposite films and fibers based on cellulose nanocrystals (P-tCNCs) and a thermoplastic polyurethane (PU) elastomer is reported. High-aspect-ratio P-tCNCs were isolated from tunicates using phosphoric acid hydrolysis, which is a process that affords nanocrystals displaying high thermal stability. Nanocomposites were produced by solvent casting (films) or melt-mixing in a twin-screw extruder and subsequent melt-spinning (fibers). The processing protocols were found to affect the orientation of both PU hard segments and the P-tCNCs within the PU matrix and therefore the mechanical properties. While the films were isotropic, both the polymer matrix and the P-tCNCs proved to be aligned along the fiber direction in the fibers, as shown using SAXS/WAXS, angle-dependent Raman spectroscopy, and birefringence analysis. Tensile tests reveal that fibers and films, at similar P-tCNC contents, display Young’s moduli and strain-at-break that are within the same order of magnitude, but the stress-at-break was found to be ten-times higher for fibers, conferring them a superior toughness over films.  more » « less
Award ID(s):
1844463
PAR ID:
10140633
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
11
Issue:
12
ISSN:
2073-4360
Page Range / eLocation ID:
1912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many commodity plastics, such as thermoplastic polyurethanes (PUs), require reinforcement for use as commercial products. Cellulose nanocrystals (CNCs) offer a “green” and scalable approach to polymer reinforcement as they are exceptionally stiff, recyclable, and abundant. Unfortunately, achieving efficient CNC reinforcement of PUs with industrial melt processing techniques is difficult, mostly due to the incompatibility of the hydrophobic PU with hydrophilic CNCs, limiting their dispersion. Here, a hydrophilic PU is synthesized to achieve strong reinforcement in melt‐processed nanocomposite fibers using filter paper‐sourced CNCs. The melt‐spun fibers, exhibiting smooth surfaces even at high CNC loading (up to 25 wt%) indicating good CNC dispersion, are bench‐marked against solvent‐cast films—solvent processing is not scalable but disperses CNCs well and produces strong CNC reinforcement. Mechanical analysis shows the CNC addition stiffens both nanocomposite films and fibers. The stress and strain at break, however, are not significantly affected in films, whereas adding CNCs to fibers increases the stress‐at‐break while reducing the strain‐at‐break. Compared to earlier studies employing a hydrophobic (and stiffer) PU, CNC addition to a hydrophilic PU substantially increases the fiber stiffness and strength. This work therefore suggests that rendering thermoplastics more hydrophilic might pave the way for “greener” polymer composite products using CNCs. 
    more » « less
  2. Polyurethane (PU) elastomers are among the most used rubberlike materials due to their combined merits, including high abrasion resistance, excellent mechanical properties, biocompatibility, and good processing performance. A PU elastomer exhibits pronounced hysteresis, leading to a high toughness on the order of 104 J/m2. However, toughness gained from hysteresis is ineffective to resist crack growth under cyclic load, causing a fatigue threshold below 100 J/m2. Here we report a fatigue-resistant PU fiber–matrix composite, using commercially available Spandex as the fibers and PU elastomer as the matrix. The Spandex fibers are stiff, strong, and stretchable. The matrix is soft, tough, and stretchable. We describe a pullout test to measure the adhesion toughness between the fiber and matrix. The test is highly reproducible, showing an adhesion toughness of 3170 J/m2. The composite shows a maximum stretchability of 6.0, a toughness of 16.7 kJ/m2, and a fatigue threshold of 3900 J/m2. When a composite with a precut crack is stretched, the soft matrix causes the crack tip to blunt greatly, which distributes high stress over a long segment of the Spandex fiber ahead the crack tip. This deconcentration of stress makes the composite resist the growth of cracks under monotonic and cyclic loads. The PU elastomer composites open doors for realistic applications of fatigue-resistant elastomers 
    more » « less
  3. We report the electrospinning of mechanically-tunable, cellulose nanocrystal (CNC)-reinforced polyurethanes (PUs). Using high-aspect ratio CNCs from tunicates, the stiffness and strength of electrospun PU/CNC mats are shown to generally increase. Furthermore, by tuning the electrospinning conditions, fibrous PU/CNC mats were created with either aligned or non-aligned fibers, as confirmed by scanning electron microscopy. PU/CNC mats having fibers aligned in the strain direction were stiffer and stronger compared to mats containing non-aligned fibers. Interestingly, fiber alignment was accompanied by an anisotropic orientation of the CNCs, as confirmed by wide-angle X-ray scattering, implying their alignment additionally benefits both stiffness and strength of fibrous PU/CNC nanocomposite mats. These findings suggest that CNC alignment could serve as an additional reinforcement mechanism in the design of stronger fibrous nanocomposite mats. 
    more » « less
  4. Abstract Before large volumes of crystal poor rhyolites are mobilized as melt, they are extracted through the reduction of pore space within their corresponding crystal matrix (compaction). Petrological and mechanical models suggest that a significant fraction of this process occurs at intermediate melt fractions (ca. 0.3–0.6). The timescales associated with such extraction processes have important ramifications for volcanic hazards. However, it remains unclear how melt is redistributed at the grain‐scale and whether using continuum scale models for compaction is suitable to estimate extraction timescales at these melt fractions. To explore these issues, we develop and apply a two‐phase continuum model of compaction to two suites of analog phase separation experiments—one conducted at low and the other at high temperatures, T, and pressures, P. We characterize the ability of the crystal matrix to resist porosity change using parameterizations of granular phenomena and find that repacking explains both data sets well. A transition between compaction by repacking to melt‐enhanced grain boundary diffusion‐controlled creep near the maximum packing fraction of the mush may explain the difference in compaction rates inferred from high T + P experiments and measured in previous deformation experiments. When upscaling results to magmatic systems at intermediate melt fractions, repacking may provide an efficient mechanism to redistribute melt. Finally, outside nearly instantaneous force chain disruption events occasionally recorded in the low T + P experiments, melt loss is continuous, and two‐phase dynamics can be solved at the continuum scale with an effective matrix viscosity. 
    more » « less
  5. Arranging semiconducting nanocrystals into ordered superstructures is a promising platform to study fundamental light-matter interactions and develop programmable optical metamaterials. We investigated how the geometrical arrangement of CdS nanocrystals in hierarchical assemblies affects chiroptical properties. To create these structures, we controlled the evaporation of a colloidal CdS nanocrystal solution between two parallel plates. We combined in situ microscopy and computational modeling to establish a formation mechanism involving the shear-induced alignment of nanocrystal fibers and the subsequent mechanical relaxation of the stretched fibers to form Raman noodle–type band textures. The high linear anisotropy in these films shares many similarities with cholesteric liquid crystals. The films deposited on top and bottom surfaces exhibit opposite chirality. The mechanistic insights from this study are consequential to enable future advances in the design and fabrication of programmable optical metamaterials for further development of polarization-based optics toward applications in sensing, hyperspectral imaging, and quantum information technology. 
    more » « less