skip to main content

Title: Three-dimensional crystals of adaptive knots
Starting with Gauss and Kelvin, knots in fields were postulated to behave like particles, but experimentally they were found only as transient features or required complex boundary conditions to exist and could not self-assemble into three-dimensional crystals. We introduce energetically stable, micrometer-sized knots in helical fields of chiral liquid crystals. While spatially localized and freely diffusing in all directions, they resemble colloidal particles and atoms, self-assembling into crystalline lattices with open and closed structures. These knots are robust and topologically distinct from the host medium, though they can be morphed and reconfigured by weak stimuli under conditions such as those in displays. A combination of energy-minimizing numerical modeling and optical imaging uncovers the internal structure and topology of individual helical field knots and the various hierarchical crystalline organizations that they form.
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
1449 to 1453
Sponsoring Org:
National Science Foundation
More Like this
  1. To design and optimize arrays of vertical-axis wind turbines (VAWTs) for maximal power density and minimal wake losses, a careful consideration of the inherently three-dimensional structure of the wakes of these turbines in real operating conditions is needed. Accordingly, a new volumetric particle-tracking velocimetry method was developed to measure three-dimensional flow fields around full-scale VAWTs in field conditions. Experiments were conducted at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA, using six cameras and artificial snow as tracer particles. Velocity and vorticity measurements were obtained for a 2 kW turbine with five straight blades and a 1 kW turbine with three helical blades, each at two distinct tip-speed ratios and at Reynolds numbers based on the rotor diameter $D$ between $1.26 \times 10^{6}$ and $1.81 \times 10^{6}$ . A tilted wake was observed to be induced by the helical-bladed turbine. By considering the dynamics of vortex lines shed from the rotating blades, the tilted wake was connected to the geometry of the helical blades. Furthermore, the effects of the tilted wake on a streamwise horseshoe vortex induced by the rotation of the turbine were quantified. Lastly, the implications of this dynamics for the recovery of the wakemore »were examined. This study thus establishes a fluid-mechanical connection between the geometric features of a VAWT and the salient three-dimensional flow characteristics of its near-wake region, which can potentially inform both the design of turbines and the arrangement of turbines into highly efficient arrays.« less
  2. Abstract

    Cementitious materials are complex composites that exhibit significant spatial heterogeneity in their chemical composition and micromechanical response. Modern 3-dimensional characterization techniques using X-rays from synchrotron light sources, such as micro-computed tomography (μCT) and far-field high-energy diffraction microscopy (ff-HEDM), are now capable of probing this micromechanical heterogeneity. In this work, the above mentioned techniques are used to understand the varying micromechanical response of crystalline phases (cubic iron oxide andα-quartz) inherently present within an alkali-activated fly ash (AAF) duringin-situconfined compression. A subset of the crystals probed using ff-HEDM are registered with the tomographic reconstructions and tracked through the applied loads, highlighting the combination ofμCT and ff-HEDM as a means to examine both elastic strain in the crystalline particles (and by extension local stress response) and plastic strain in the matrix. In this study, significant differences in the load carrying behaviors of the crystalline phases were observed wherein the cubic iron oxide crystals laterally expanded during the confined compression test, while theα-quartz particles laterally contracted and at the final load step, shed load likely due to failure in the surrounding matrix. Finally, the two characterization techniques are discussed in terms of both advantages and associated challenges for analysis of multi-phase cementitious materials.

  3. Abstract

    In insulating crystals, it was previously shown that defects with two fewer dimensions than the bulk can bind topological electronic states. We here further extend the classification of topological defect states by demonstrating that the corners of crystalline defects with integer Burgers vectors can bind 0D higher-order end (HEND) states with anomalous charge and spin. We demonstrate that HEND states are intrinsic topological consequences of the bulk electronic structure and introduce new bulk topological invariants that are predictive of HEND dislocation states in solid-state materials. We demonstrate the presence of first-order 0D defect states in PbTe monolayers and HEND states in 3D SnTe crystals. We relate our analysis to magnetic flux insertion in insulating crystals. We find thatπ-flux tubes in inversion- and time-reversal-symmetric (helical) higher-order topological insulators bind Kramers pairs of spin-charge-separated HEND states, which represent observable signatures of anomalous surface half quantum spin Hall states.

  4. In this report, we explore the internal structural features of polyMOFs consisting of equal mass ratios of metal-coordinating poly(benzenedicarboxylic acid) blocks and non-coordinating poly(ethylene glycol) (PEG) blocks. The studies reveal alternating lamellae of metal-rich, crystalline regions and metal-deficient non-crystalline polymer, which span the length of hundreds of nanometers. Polymers consisting of random PEG blocks, PEG end-blocks, or non-coordinating poly(cyclooctadiene) (COD) show similar alternation of metal-rich and metal-deficient regions, indicating a universal self-assembly mechanism. A variety of techniques were employed to interrogate the internal structure of the polyMOFs, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and small-angle synchrotron X-ray scattering (SAXS). Independent of the copolymer architecture or composition, the internal structure of the polyMOF crystals showed similar lamellar self-assembly at single-nanometer length scales.
  5. Abstract

    Molecular emission was imaged with ALMA from numerous components near and within bright H2-emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The four fields targeted show contrasting properties but within them, seventeen distinct molecular clouds are identified with CO emission; a few also show emission from HCO+, SiO, and/or SO. These observations are compared with Cloudy models of these knots. It has been suggested that the Crab filaments present an exotic environment in which H2emission comes from a mostly neutral zone probably heated by cosmic rays produced in the supernova surrounding a cool core of molecular gas. Our model is consistent with the observed COJ= 3 − 2 line strength. These molecular line emitting knots in the Crab Nebula present a novel phase of the ISM representative of many important astrophysical environments.