skip to main content


Title: Design rules for 2D field mediated assembly of different shaped colloids into diverse microstructures
Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies.  more » « less
Award ID(s):
2113594
NSF-PAR ID:
10413966
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
48
ISSN:
1744-683X
Page Range / eLocation ID:
9273 to 9282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Properties of particulate-filled polymer matrix composites are highly dependent on the spatial position, orientation and assembly of the particles throughout the matrix. External fields such as electric and magnetic have been individually used to orient, position and assemble micro and nanoparticles in polymer solutions and their resulting material properties were investigated, but the combined effect of using more than one external field on the material properties has not been studied in detail. Applying different configurations of electric and magnetic fields on geometrically and magnetically anisotropic particulates can produce varying microarchitectures with a range of material properties. Experimentally and with simulations, we systematically probe the effect of combined electric and magnetic fields on the microstructure formation of geometrically and magnetically anisotropic barium hexaferrite (BHF) in polydimethylsiloxane (PDMS). The magnetic and dielectric properties resulting from different microstructures are characterized and microstructure-property relationships are analyzed. Our results demonstrate that a variety of microarchitectures can be produced using multi-field processing depending on the nature of the applied external field. For example, the application of an electric field creates macro-chains where the orientation of the BHF stacks inside the macro-chains is random. On the other hand, application of a magnetic field rotates the BHF stacks within the macro-chain in the direction dictated by the magnetic field. In simulations, the dielectrophoretic, magnetic, and viscous forces and torques acting on the particles show that particle anisotropies are central to the ability to control orientation along the orthogonal magnetic and geometric axes, mirroring experimental results. The authors refer to the ability to manipulate particle orientation along orthogonal axes as ‘orthogonal control’. Using this technique, not only are a variety of microstructures possible, but also a range of dielectric and magnetic properties can result. For example, for 1 vol% BHF-PDMS composites, the experimental dielectric permittivity is found to vary from 2.84 to 5.12 and the squareness ratio (remnant magnetization over saturation magnetization) is found to vary from 0.55 to 0.92 (from 0.52 to 0.99 in simulations) depending on the applied external stimuli. The ability to predict and produce a variety of microstructures with a range of properties from a single material set will be particularly beneficial for resin pool based additive manufacturing and 3D printing.

     
    more » « less
  2. Abstract

    Under an applied magnetic field, superparamagnetic Fe3O4nanoparticles with complementary DNA strands assemble into crystalline, pseudo‐1D elongated superlattice structures. The assembly process is driven through a combination of DNA hybridization and particle dipolar coupling, a property dependent on particle composition, size, and interparticle distance. The DNA controls interparticle distance and crystal symmetry, while the magnetic field leads to anisotropic crystal growth. Increasing the dipole interaction between particles by increasing particle size or external field strength leads to a preference for a particular crystal morphology (e.g., rhombic dodecahedra, stacked clusters, and smooth rods). Molecular dynamics simulations show that an understanding of both DNA hybridization energetic and magnetic interactions is required to predict the resulting crystal morphology. Taken together, the data show that applied magnetic fields with magnetic nanoparticles can be deliberately used to access nanostructures beyond what is possible with DNA hybridization alone.

     
    more » « less
  3. Abstract

    In this study, we discuss the characterization and quantification of composite microstructures formed by the external field manipulation of high aspect ratio magnetic particles in an elastomeric matrix. In our prior work, we have demonstrated that the simultaneous application of electric and magnetic fields on hard magnetic particles with geometric anisotropy can create a hierarchy of structures at different length scales, which can be used to achieve a wide range of properties. We aim to characterize these hierarchical structures and relate them to final composite properties so we can achieve our ultimate goal of designing a material for a prescribed performance. The complex particle structures are formed during processing by using electric and magnetic fields, and they are then locked-in by curing the polymer matrix around the particles. The model materials used in the study are barium hexaferrite (BHF) particles and polydimethylsiloxane (PDMS) elastomer. BHF was selected for its hard magnetic properties and high geometric anisotropy. PDMS was selected for its good mechanical properties and its tunable curing kinetics. The resulting BHF-PDMS composites are magnetoactive, i.e., they will deform and actuate in response to magnetic fields. In order to investigate the resulting particle orientation, distribution and alignment and to predict the composite’s macro scale properties, we developed techniques to quantify the particle structures.

    The general framework we developed allows us to quantify and directly compare the microstructures created within the composites. To identify structures at the different length scales, images of the composite are taken using both optical microscopy and scanning electron microscopy. We then use ImageJ to analyze them and gather data on particle size, location, and orientation angle. The data is then exported to MATLAB, and is used to run a Minimum Spanning Tree Algorithm to classify the particle structures, and von Mises Distributions to quantify the alignment of said structures.

    Important findings show 1) the ability to control structure using a combination of external electric, magnetic and thermal fields; 2) that electric fields promote long range order while magnetic fields promote short-range order; and 3) the resulting hierarchical structure greatly influence bulk material properties. Manipulating particles in a composite material is technologically important because changes in microstructure can alter the properties of the bulk material. The multifield processing we investigate here can form the basis for next generation additive manufacturing platforms where desired properties are tailored locally through in-situ hierarchical control of particle arrangements.

     
    more » « less
  4. Many types of animal cells exert active, contractile forces and mechanically deform their elastic substrate, to accomplish biological functions such as migration. These substrate deformations provide a mechanism in principle by which cells may sense other cells, leading to long-range mechanical inter–cell interactions and possible self-organization. Here, inspired by cell mechanobiology, we propose an active matter model comprising self-propelling particles that interact at a distance through their mutual deformations of an elastic substrate. By combining a minimal model for the motility of individual particles with a linear elastic model that accounts for substrate-mediated, inter–particle interactions, we examine emergent collective states that result from the interplay of motility and long-range elastic dipolar interactions. In particular, we show that particles self-assemble into flexible, motile chains which can cluster to form diverse larger-scale compact structures with polar order. By computing key structural and dynamical metrics, we distinguish between the collective states at weak and strong elastic interaction strength, as well as at low and high motility. We also show how these states are affected by confinement within a channel geometry–an important characteristic of the complex mechanical micro-environment inhabited by cells. Our model predictions may be generally applicable to active matter with dipolar interactions ranging from biological cells to synthetic colloids endowed with electric or magnetic dipole moments. 
    more » « less
  5. In this study, we investigated hierarchical microarchitecture formation of magnetic barium hexaferrite (BF) platelets inside the polydimethylsiloxane (PDMS) matrix using electric and magnetic field colloidal assembly technique. First, external fields were applied to the colloidal solution to form the microstructure before curing the composites. After microstructure formation the composites were cured to freeze the microstructure by the application of heat. We investigated two different cases in this study-(1) magnetic field processed composites and (2) multi-field processed composites which were processed under both magnetic and electric field. We observed that macro-chains formed due to the electric and magnetic field had much higher length compared to the macro-chains formed due to the just magnetic field. For both cases individuals BHF are found to be oriented in the direction of external field. The analysis of SEM microstructures using ImageJ and MATLAB showed that at least two different level of hierarchies are present in the microstructure for both cases which can be named as BHF stacks and micro-chains. From the microstructure analysis, we found that compared to just magnetic field processed composites, the orientation of individual particles, BHF stacks and micro-chains in relation to the external field were found to be higher for the multi-field processed composites. Magneto-electro-hydrodynamics modeling of the polymer-particulate mixture predicted similar behavior. Computational simulations were performed wherein particulates, subjected to both DEP forces and additional magnetic dipole interactions, were allowed to form quasi-equilibrium structures before locking in a final structure to represent curing. Results show that dielectrophoretic (DEP) force produced from the local non-uniform electric field facilitates the translation of the platelets towards formation of chain-like structure, while external magnetic field augmented the rotation of particles inside the chain-like structure. Analysis of the simulation of microstructures confirms that multiple level of hierarchies are present in the composites microstructure for both cases, while the case with both electric and magnetic fields produced longer chains. The understanding of the hierarchical microstructure formation using the multi-field processing technique will help in the future to fabricate more complex microarchitectures with resulting multi-material properties. 
    more » « less