skip to main content


Title: Surface anchoring as a control parameter for stabilizing torons, skyrmions, twisted walls, fingers and their hybrids in chiral nematics
Chiral condensed matter systems, such as liquid crystals and magnets, exhibit a host of spatially localized topological structures that emerge from the medium’s tendency to twist and its competition with confinement and field coupling effects. We show that the strength of perpendicular surface boundary conditions can be used to control the structure and topology of solitonic and other localized field configurations. By combining numerical modeling and threedimensional imaging of the director field, we reveal structural stability diagrams and intertransformation of twisted walls and fingers, torons and skyrmions and their crystalline organizations upon changing boundary conditions. Our findings provide a recipe for controllably realizing skyrmions, torons and hybrid solitonic structures possessing features of both of them, which will aid in fundamental explorations and technological uses of such topological solitons. Moreover, with limited examples, we discuss how similar principles can be systematically used to tune stability of twisted walls versus cholesteric fingers and hopfions versus skyrmions, torons and twistions.  more » « less
Award ID(s):
1810513
NSF-PAR ID:
10140869
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical review
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topological solitons are non-singular but topologically nontrivial structures in fields, which have fundamental significance across various areas of physics, similar to singular defects. Production and observation of singular and solitonic topological structures remain a complex undertaking in most branches of science – but in soft matter physics, they can be realized within the director field of a liquid crystal. Additionally, it has been shown that confining liquid crystals to spherical shells using microfluidics resulted in a versatile experimental platform for the dynamical study of topological transformations between director configurations. In this work, we demonstrate the triggered formation of topological solitons, cholesteric fingers, singular defect lines and related structures in liquid crystal shells. We show that to accommodate these objects, shells must possess a Janus nature, featuring both twisted and untwisted domains. We report the formation of linear and axisymmetric objects, which we identify as cholesteric fingers and skyrmions or elementary torons, respectively. We then take advantage of the sensitivity of shells to numerous external stimuli to induce dynamical transitions between various types of structures, allowing for a richer phenomenology than traditional liquid crystal cells with solid flat walls. Using gradually more refined experimental techniques, we induce the targeted transformation of cholesteric twist walls and fingers into skyrmions and elementary torons. We capture the different stages of these director transformations using numerical simulations. Finally, we uncover an experimental mechanism to nucleate arrays of axisymmetric structures on shells, thereby creating a system of potential interest for tackling crystallography studies on curved spaces. 
    more » « less
  2. Abstract

    Topological spin/polarization structures in ferroic materials continue to draw great attention as a result of their fascinating physical behaviors and promising applications in the field of high‐density nonvolatile memories as well as future energy‐efficient nanoelectronic and spintronic devices. Such developments have been made, in part, based on recent advances in theoretical calculations, the synthesis of high‐quality thin films, and the characterization of their emergent phenomena and exotic phases. Herein, progress over the last decade in the study of topological structures in ferroic thin films and heterostructures is explored, including the observation of topological structures and control of their structures and emergent physical phenomena through epitaxial strain, layer thickness, electric, magnetic fields, etc. First, the evolution of topological spin structures (e.g., magnetic skyrmions) and associated functionalities (e.g., topological Hall effect) in magnetic thin films and heterostructures is discussed. Then, the exotic polar topologies (e.g., domain walls, closure domains, polar vortices, bubble domains, and polar skyrmions) and their emergent physical properties in ferroelectric oxide films and heterostructures are explored. Finally, a brief overview and prospectus of how the field may evolve in the coming years is provided.

     
    more » « less
  3. Abstract The proposal of fault-tolerant quantum computations, which promise to dramatically improve the operation of quantum computers and to accelerate the development of the compact hardware for them, is based on topological quantum field theories, which rely on the existence in Nature of physical systems described by a Lagrangian containing a non-Abelian (NA) topological term. These are solid-state systems having two-dimensional electrons, which are coupled to magnetic-flux-quanta vortexes, forming complex particles, known as anyons. Topological quantum computing (TQC) operations thus represent a physical realization of the mathematical operations involving NA representations of a braid group B n , generated by a set of n localized anyons, which can be braided and fused using a “tweezer” and controlled by a detector. For most of the potential TQC material systems known so far, which are 2D-electron–gas semiconductor structure at high magnetic field and a variety of hybrid superconductor/topological-material heterostructures, the realization of anyon localization versus tweezing and detecting meets serious obstacles, chief among which are the necessity of using current control, i.e., mobile particles, of the TQC operations and high density electron puddles (containing thousands of electrons) to generate a single vortex. Here we demonstrate a novel system, in which these obstacles can be overcome, and in which vortexes are generated by a single electron. This is a ~ 150 nm size many electron InP/GaInP 2 self-organized quantum dot, in which molecules, consisting of a few localized anyons, are naturally formed and exist at zero external magnetic field. We used high-spatial-resolution scanning magneto-photoluminescence spectroscopy measurements of a set of the dots having five and six electrons, together with many-body quantum mechanical calculations to demonstrate spontaneous formation of the anyon magneto-electron particles ( e ν ) having fractional charge ν  =  n / k, where n  = 1–4 and k  = 3–15 are the number of electrons and vortexes, respectively, arranged in molecular structures having a built-in (internal) magnetic field of 6–12 T. Using direct imaging of the molecular configurations we observed fusion and braiding of e ν - anyons under photo-excitation and revealed the possibility of using charge sensing for their control. Our investigations show that InP/GaInP 2 anyon-molecule QDs, which have intrinsic transformations of localized e ν - anyons compatible with TQC operations and capable of being probed by charge sensing, are very promising for the realization of TQC. 
    more » « less
  4. Abstract

    Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of −1) to a two-dimensional, tetratic lattice of merons (with topological charge of −1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

     
    more » « less
  5. BACKGROUND The past decade has witnessed considerable progress toward the creation of new quantum technologies. Substantial advances in present leading qubit technologies, which are based on superconductors, semiconductors, trapped ions, or neutral atoms, will undoubtedly be made in the years ahead. Beyond these present technologies, there exist blueprints for topological qubits, which leverage fundamentally different physics for improved qubit performance. These qubits exploit the fact that quasiparticles of topological quantum states allow quantum information to be encoded and processed in a nonlocal manner, providing inherent protection against decoherence and potentially overcoming a major challenge of the present generation of qubits. Although still far from being experimentally realized, the potential benefits of this approach are evident. The inherent protection against decoherence implies better scalability, promising a considerable reduction in the number of qubits needed for error correction. Transcending possible technological applications, the underlying physics is rife with exciting concepts and challenges, including topological superconductors, non-abelian anyons such as Majorana zero modes (MZMs), and non-abelian quantum statistics.­­ ADVANCES In a wide-ranging and ongoing effort, numerous potential material platforms are being explored that may realize the required topological quantum states. Non-abelian anyons were first predicted as quasiparticles of topological states known as fractional quantum Hall states, which are formed when electrons move in a plane subject to a strong perpendicular magnetic field. The prediction that hybrid materials that combine topological insulators and conventional superconductors can support localized MZMs, the simplest type of non-abelian anyon, brought entirely new material platforms into view. These include, among others, semiconductor-superconductor hybrids, magnetic adatoms on superconducting substrates, and Fe-based superconductors. One-dimensional systems are playing a particularly prominent role, with blueprints for quantum information applications being most developed for hybrid semiconductor-superconductor systems. There have been numerous attempts to observe non-abelian anyons in the laboratory. Several experimental efforts observed signatures that are consistent with some of the theoretical predictions for MZMs. A few extensively studied platforms were subjected to intense scrutiny and in-depth analyses of alternative interpretations, revealing a more complex reality than anticipated, with multiple possible interpretations of the data. Because advances in our understanding of a physical system often rely on discrepancies between experiment and theory, this has already led to an improved understanding of Majorana signatures; however, our ability to detect and manipulate non-abelian anyons such as MZMs remains in its infancy. Future work can build on improved materials in some of the existing platforms but may also exploit new materials such as van der Waals heterostructures, including twisted layers, which promise many new options for engineering topological phases of matter. OUTLOOK Experimentally establishing the existence of non-abelian anyons constitutes an outstandingly worthwhile goal, not only from the point of view of fundamental physics but also because of their potential applications. Future progress will be accelerated if claims of Majorana discoveries are based on experimental tests that go substantially beyond indicators such as zero-bias peaks that, at best, suggest consistency with a Majorana interpretation. It will be equally important that these discoveries build on an excellent understanding of the underlying material systems. Most likely, further material improvements of existing platforms and the exploration of new material platforms will both be important avenues for progress toward obtaining solid evidence for MZMs. Once that has been achieved, we can hope to explore—and harness—the fascinating physics of non-abelian anyons such as the topologically protected ground state manifold and non-abelian statistics. Proposed topological platforms. (Left) Proposed state of electrons in a high magnetic field (even-denominator fractional quantum Hall states) are predicted to host Majorana quasiparticles. (Right) Hybrid structures of superconductors and other materials have also been proposed to host such quasiparticles and can be tailored to create topological quantum bits based on Majoranas. 
    more » « less