van der Waals magnetic materials open up exciting possibilities to investigate fundamental spin properties in low-dimensional systems and to build compact functional spintronic structures. This review focuses on the recent progress in two-dimensional(2D) magnets that explore beyond the homogenous magnetically-ordered state, including magnons (spin waves), magnetic skyrmions, and complex magnetic domains. Properties of these spin and topology excitations in 2D magnets provide insights into spin-orbit interactions and other forms of coupling between electrons, phonons, and spin-dependent excitations. Such spin-based quasiparticles can also serve as information carriers for next-generation high-speed computing elements. We will first lay out the general theoretical basis of dynamical responses in magnetic systems, followed by detailed descriptions of experimental progress in magnons and spin textures (including magnetic domains and skyrmions). Discussion on the experimental techniques and future perspectives are also included.
more »
« less
Magnetic skyrmions and domain walls for logical and neuromorphic computing
Abstract Topological solitons are exciting candidates for the physical implementation of next-generation computing systems. As these solitons are nanoscale and can be controlled with minimal energy consumption, they are ideal to fulfill emerging needs for computing in the era of big data processing and storage. Magnetic domain walls (DWs) and magnetic skyrmions are two types of topological solitons that are particularly exciting for next-generation computing systems in light of their non-volatility, scalability, rich physical interactions, and ability to exhibit non-linear behaviors. Here we summarize the development of computing systems based on magnetic topological solitons, highlighting logical and neuromorphic computing with magnetic DWs and skyrmions.
more »
« less
- PAR ID:
- 10435670
- Date Published:
- Journal Name:
- Neuromorphic Computing and Engineering
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2634-4386
- Page Range / eLocation ID:
- 022003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Noncentrosymmetric (NCS) materials feature an exciting array of functionalities such as nonlinear optical (NLO) responses and topological spin textures (skyrmions). While NLO materials and magnetic skyrmions display two different sets of physical properties, their design strategies are deeply connected in terms of atomic-scale precision, structural customization, and electronic tunability. Despite impressive progress in studying these systems separately, a joint road map for navigating the chemical principles for NCS materials remains elusive. This review unites two subtopics of NCS systems, NLO materials and magnetic skyrmions, offering a multifaceted narrative of how to translate the often-abstract fundamentals to the targeted functionalities while inviting innovative approaches from the community. We outline the design principles central to the desired properties by exemplifying relevant examples in the field. We supplement materials chemistry with pertinent electronic structures to demonstrate the power of the fundamentals to create systems integration relevant to foreseeable societal impacts in frequency-doubling instrumentation and spin-based electronics.more » « less
-
Abstract From elementary particles to cosmological structures, topological solitons are ubiquitous nonlinear excitations valued for their robustness and complex interactions. In magnetism, solitons such as skyrmions and antiskyrmions behave analogously to particles and antiparticles, typically annihilating in pairs in accordance with topological conservation laws. Here the stripe‐to‐skyrmion transition is experimentally observed and a model for a skyrmion–antiskyrmion–skyrmion intertwined state is introduced, in which the central antiskyrmion is annihilated, leading to an increase in the local topological number. Because this transition occurs repeatedly across the film, the cumulative effect produces a global increase in the total topological charge. This model reflects a breakdown of topological protection in isotropic Dzyaloshinskii–Moriya interaction (DMI) materials, where symmetry constraints render the antiskyrmion energetically unstable and thermally activated. Using micromagnetic simulations and minimum‐energy‐path calculations, the antiskyrmion is identified as a transient, metastable excitation. To highlight its functional potential, this stripe‐to‐skyrmion transition within a Hall device is exploited to generate stochastic bitstreams, which are subsequently used in a proof‐of‐concept probabilistic computing demonstration. These results contribute to the understanding of topological spin‐texture dynamics and suggest opportunities for leveraging their transient behavior in probabilistic computing architectures.more » « less
-
null (Ed.)Abstract Room-temperature skyrmions in magnetic multilayers are considered to be promising candidates for the next-generation spintronic devices. Several approaches have been developed to control skyrmions, but they either cause significant heat dissipation or require ultrahigh electric fields near the breakdown threshold. Here, we demonstrate electric-field control of skyrmions through strain-mediated magnetoelectric coupling in ferromagnetic/ferroelectric multiferroic heterostructures. We show the process of non-volatile creation of multiple skyrmions, reversible deformation and annihilation of a single skyrmion by performing magnetic force microscopy with in situ electric fields. Strain-induced changes in perpendicular magnetic anisotropy and interfacial Dzyaloshinskii–Moriya interaction strength are characterized experimentally. These experimental results, together with micromagnetic simulations, demonstrate that strain-mediated magnetoelectric coupling (via strain-induced changes in both the perpendicular magnetic anisotropy and interfacial Dzyaloshinskii–Moriya interaction is responsible for the observed electric-field control of skyrmions. Our work provides a platform to investigate electric-field control of skyrmions in multiferroic heterostructures and paves the way towards more energy-efficient skyrmion-based spintronics.more » « less
-
Abstract Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.more » « less
An official website of the United States government

