skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cost effective active search
We study a special paradigm of active learning, called cost effective active search, where the goal is to find a given number of positive points from a large unlabeled pool with minimum labeling cost. Most existing methods solve this problem heuristically, and few theoretical results have been established. We adopt a principled Bayesian approach for the first time. We first derive the Bayesian optimal policy and establish a strong hardness result: the optimal policy is hard to approximate, with the best-possible approximation ratio lower bounded by Ω(n^0.16). We then propose an efficient and nonmyopic policy using the negative Poisson binomial distribution. We propose simple and fast approximations for computing its expectation, which serves as an essential role in our proposed policy. We conduct comprehensive experiments on various domains such as drug and materials discovery, and demonstrate that our proposed search procedure is superior to the widely used greedy baseline.  more » « less
Award ID(s):
1845434
PAR ID:
10140928
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems
Volume:
32
Page Range / eLocation ID:
4880 - 4889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Active search is a setting in adaptive experimental design where we aim to uncover members of rare, valuable class(es) subject to a budget constraint. An important consideration in this problem is diversity among the discovered targets – in many applications, diverse discoveries offer more insight and may be preferable in downstream tasks. However, most existing active search policies either assume that all targets belong to a common positive class or encourage diversity via simple heuristics. We present a novel formulation of active search with multiple target classes, characterized by a utility function chosen from a flexible family whose members encourage diversity among discoveries via a diminishing returns mechanism. We then study this problem under the Bayesian lens and prove a hardness result for approximating the optimal policy for arbitrary positive, increasing, and concave utility functions. Finally, we design an efficient, nonmyopic approximation to the optimal policy for this class of utilities and demonstrate its superior empirical performance in a variety of experimental settings, including drug discovery. 
    more » « less
  2. Summary Malaria is an infectious disease affecting a large population across the world, and interventions need to be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease related information to a resource allocation. An optimal policy must control the spread of the disease while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of resource allocation policies that can accommodate allocation of resources residing in a continuous domain and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated optimal policy under the proposed framework improves the cumulative long-term outcome compared with naive approaches in both simulation experiments and application to malaria interventions in the Democratic Republic of the Congo. 
    more » « less
  3. Effective coordination of design teams must account for the influence of costs incurred while searching for the best design solutions. This article introduces a cost-aware multi-agent system (MAS), a theoretical model to (1) explain how individuals in a team should search, assuming that they are all rational utility-maximizing decision-makers and (2) study the impact of cost on the search performance of both individual agents and the system. First, we develop a new multi-agent Bayesian optimization framework accounting for information exchange among agents to support their decisions on where to sample in search. Second, we employ a reinforcement learning approach based on the multi-agent deep deterministic policy gradient for training MAS to identify where agents cannot sample due to design constraints. Third, we propose a new cost-aware stopping criterion for each agent to determine when costs outweigh potential gains in search as a criterion to stop. Our results indicate that cost has a more significant impact on MAS communication in complex design problems than in simple ones. For example, when searching in complex design spaces, some agents could initially have low-performance gains, thus stopping prematurely due to negative payoffs, even if those agents could perform better in the later stage of the search. Therefore, global-local communication becomes more critical in such situations for the entire system to converge. The proposed model can serve as a benchmark for empirical studies to quantitatively gauge how humans would rationally make design decisions in a team. 
    more » « less
  4. This paper presents an inverse reinforcement learning (IRL) framework for Bayesian stopping time problems. By observing the actions of a Bayesian decision maker, we provide a necessary and sufficient condition to identify if these actions are consistent with optimizing a cost function. In a Bayesian (partially observed) setting, the inverse learner can at best identify optimality wrt the observed strategies. Our IRL algorithm identifies optimality and then constructs set-valued estimates of the cost function. To achieve this IRL objective, we use novel ideas from Bayesian revealed preferences stemming from microeconomics. We illustrate the proposed IRL scheme using two important examples of stopping time problems, namely, sequential hypothesis testing and Bayesian search. As a real-world example, we illustrate using a YouTube dataset comprising metadata from 190000 videos how the proposed IRL method predicts user engagement in online multimedia platforms with high accuracy. Finally, for finite datasets, we propose an IRL detection algorithm and give finite sample bounds on its error probabilities. 
    more » « less
  5. Crowdsourcing is an effective and efficient paradigm for obtaining labels for unlabeled corpus employing crowd workers. This work considers the budget allocation problem for a generalized setting on a graph of instances to be labeled where edges encode instance dependencies. Specifically, given a graph and a labeling budget, we propose an optimal policy to allocate the budget among the instances to maximize the overall labeling accuracy. We formulate the problem as a Bayesian Markov Decision Process (MDP), where we define our task as an optimization problem that maximizes the overall label accuracy under budget constraints. Then, we propose a novel stage-wise reward function that considers the effect of worker labels on the whole graph at each timestamp. This reward function is utilized to find an optimal policy for the optimization problem. Theoretically, we show that our proposed policies are consistent when the budget is infinite. We conduct extensive experiments on five real-world graph datasets and demonstrate the effectiveness of the proposed policies to achieve a higher label accuracy under budget constraints. 
    more » « less