- Award ID(s):
- 1845434
- Publication Date:
- NSF-PAR ID:
- 10140929
- Journal Name:
- Advances in neural information processing systems
- Volume:
- 32
- Page Range or eLocation-ID:
- 1586 - 1598
- ISSN:
- 1049-5258
- Sponsoring Org:
- National Science Foundation
More Like this
-
Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is to leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principlemore »
-
Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiple underlying aspect factors to make decisions during their interactions with items. Second, users generally build connections with others in terms of different aspects, which produces different influences with aspects in social network. To this end, we propose a novel graph neural network (GNN) framework with multiple aspect learning, namely, HyperSoRec. Specifically, we first embed all users, items, and aspects into hyperbolic space with superior representations to ensure their hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism to capture different influences among users. Next, to characterize the multi-aspect interactions of users on items, we propose an adaptivemore »
-
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery. Both ligand and target molecules are represented as graphs with node and edge features encoding information about atomic elements and bonds respectively. Although existing deep learning models perform remarkably well at predicting physicochemical properties and binding affinities, the generation of new molecules with optimized properties remains challenging. Inherently, most GNNs perform poorly in whole-graph representation due to the limitations of the message-passing paradigm. Furthermore, step-by-step graph generation frameworks that use reinforcement learning or other sequential processing can be slow and result in a high proportion of invalid molecules with substantial post-processing needed in order to satisfy the principles of stoichiometry. To address these issues, we propose a representation-first approach to molecular graph generation. We guide the latent representation of an autoencoder by capturing graph structure information with the geometric scattering transform and apply penalties that structure the representation also by molecular properties. We show that this highly structured latent space can be directly used for molecular graph generation by the use of a GAN. We demonstrate that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.
-
Demeniconi, C. ; Davidson, I (Ed.)Many irregular domains such as social networks, financial transactions, neuron connections, and natural language constructs are represented using graph structures. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. In many of the real-world applications, the underlying graph changes over time, however, most of the existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs using a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamic graphs using the recently proposed tensor M-product technique. Theoretical results presented establish a connection between the proposed tensor approach and spectral convolution of tensors. The proposed method TM-GCN is consistent with the Message Passing Neural Network (MPNN) framework, accounting for both spatial and temporal message passing. Numerical experiments on real-world datasets demonstrate the performance of the proposed method for edge classification and link prediction tasks on dynamic graphs. We also consider an application related to the COVID-19 pandemic, and show how our method can be used for early detection of infected individuals from contact tracing data.
-
Abstract Motivation The crux of molecular property prediction is to generate meaningful representations of the molecules. One promising route is to exploit the molecular graph structure through graph neural networks (GNNs). Both atoms and bonds significantly affect the chemical properties of a molecule, so an expressive model ought to exploit both node (atom) and edge (bond) information simultaneously. Inspired by this observation, we explore the multi-view modeling with GNN (MVGNN) to form a novel paralleled framework, which considers both atoms and bonds equally important when learning molecular representations. In specific, one view is atom-central and the other view is bond-central, then the two views are circulated via specifically designed components to enable more accurate predictions. To further enhance the expressive power of MVGNN, we propose a cross-dependent message-passing scheme to enhance information communication of different views. The overall framework is termed as CD-MVGNN.
Results We theoretically justify the expressiveness of the proposed model in terms of distinguishing non-isomorphism graphs. Extensive experiments demonstrate that CD-MVGNN achieves remarkably superior performance over the state-of-the-art models on various challenging benchmarks. Meanwhile, visualization results of the node importance are consistent with prior knowledge, which confirms the interpretability power of CD-MVGNN.
Availability and implementation The code and data underlyingmore »
Supplementary information Supplementary data are available at Bioinformatics online.