skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph Theoretic and Pearson Correlation-Based Discovery of Network Biomarkers for Cancer
Two graph theoretic concepts—clique and bipartite graphs—are explored to identify the network biomarkers for cancer at the gene network level. The rationale is that a group of genes work together by forming a cluster or a clique-like structures to initiate a cancer. After initiation, the disease signal goes to the next group of genes related to the second stage of a cancer, which can be represented as a bipartite graph. In other words, bipartite graphs represent the cross-talk among the genes between two disease stages. To prove this hypothesis, gene expression values for three cancers— breast invasive carcinoma (BRCA), colorectal adenocarcinoma (COAD) and glioblastoma multiforme (GBM)—are used for analysis. First, a co-expression gene network is generated with highly correlated gene pairs with a Pearson correlation coefficient ≥ 0.9. Second, clique structures of all sizes are isolated from the co-expression network. Then combining these cliques, three different biomarker modules are developed—maximal clique-like modules, 2-clique-1-bipartite modules, and 3-clique-2-bipartite modules. The list of biomarker genes discovered from these network modules are validated as the essential genes for causing a cancer in terms of network properties and survival analysis. This list of biomarker genes will help biologists to design wet lab experiments for further elucidating the complex mechanism of cancer.  more » « less
Award ID(s):
1901628
PAR ID:
10141527
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Data
Volume:
4
Issue:
2
ISSN:
2306-5729
Page Range / eLocation ID:
81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Finding the network biomarkers of cancers and the analysis of cancer driving genes that are involved in these biomarkers are essential for understanding the dynamics of cancer. Clusters of genes in co-expression networks are commonly known as functional units. This work is based on the hypothesis that the dense clusters or communities in the gene co-expression networks of cancer patients may represent functional units regarding cancer initiation and progression. In this study, RNA-seq gene expression data of three cancers - Breast Invasive Carcinoma (BRCA), Colorectal Adenocarcinoma (COAD) and Glioblastoma Multiforme (GBM) - from The Cancer Genome Atlas (TCGA) are used to construct gene co-expression networks using Pearson Correlation. Six well-known community detection algorithms are applied on these networks to identify communities with five or more genes. A permutation test is performed to further mine the communities that are conserved in other cancers, thus calling them conserved communities. Then survival analysis is performed on clinical data of three cancers using the conserved community genes as prognostic co-variates. The communities that could distinguish the cancer patients between high- and low-risk groups are considered as cancer biomarkers. In the present study, 16 such network biomarkers are discovered. 
    more » « less
  2. Abstract Motivation Detecting cancer gene expression and transcriptome changes with mRNA-sequencing (RNA-Seq) or array-based data are important for understanding the molecular mechanisms underlying carcinogenesis and cellular events during cancer progression. In previous studies, the differentially expressed genes were detected across patients in one cancer type. These studies ignored the role of mRNA expression changes in driving tumorigenic mechanisms that are either universal or specific in different tumor types. To address the problem, we introduce two network-based multi-task learning frameworks, NetML and NetSML, to discover common differentially expressed genes shared across different cancer types as well as differentially expressed genes specific to each cancer type. The proposed frameworks consider the common latent gene co-expression modules and gene-sample biclusters underlying the multiple cancer datasets to learn the knowledge crossing different tumor types. Results Large-scale experiments on simulations and real cancer high-throughput datasets validate that the proposed network-based multi-task learning frameworks perform better sample classification compared with the models without the knowledge sharing across different cancer types. The common and cancer specific molecular signatures detected by multi-task learning frameworks on TCGA ovarian cancer, breast cancer, and prostate cancer datasets are correlated with the known marker genes and enriched in cancer relevant KEGG pathways and Gene Ontology terms. Availability and Implementation Source code is available at: https://github.com/compbiolabucf/NetML Supplementary information Supplementary data are available at Bioinformatics 
    more » « less
  3. Given the complex relationship between gene expression and phenotypic outcomes, computationally efficient approaches are needed to sift through large high-dimensional datasets in order to identify biologically relevant biomarkers. In this report, we describe a method of identifying the most salient biomarker genes in a dataset, which we call "candidate genes", by evaluating the ability of gene combinations to classify samples from a dataset, which we call "classification potential". Our algorithm, Gene Oracle, uses a neural network to test user defined gene sets for polygenic classification potential and then uses a combinatorial approach to further decompose selected gene sets into candidate and non-candidate biomarker genes. We tested this algorithm on curated gene sets from the Molecular Signatures Database (MSigDB) quantified in RNAseq gene expression matrices obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data repositories. First, we identified which MSigDB Hallmark subsets have significant classification potential for both the TCGA and GTEx datasets. Then, we identified the most discriminatory candidate biomarker genes in each Hallmark gene set and provide evidence that the improved biomarker potential of these genes may be due to reduced functional complexity. 
    more » « less
  4. Abstract Given the complex relationship between gene expression and phenotypic outcomes, computationally efficient approaches are needed to sift through large high-dimensional datasets in order to identify biologically relevant biomarkers. In this report, we describe a method of identifying the most salient biomarker genes in a dataset, which we call “candidate genes”, by evaluating the ability of gene combinations to classify samples from a dataset, which we call “classification potential”. Our algorithm, Gene Oracle, uses a neural network to test user defined gene sets for polygenic classification potential and then uses a combinatorial approach to further decompose selected gene sets into candidate and non-candidate biomarker genes. We tested this algorithm on curated gene sets from the Molecular Signatures Database (MSigDB) quantified in RNAseq gene expression matrices obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data repositories. First, we identified which MSigDB Hallmark subsets have significant classification potential for both the TCGA and GTEx datasets. Then, we identified the most discriminatory candidate biomarker genes in each Hallmark gene set and provide evidence that the improved biomarker potential of these genes may be due to reduced functional complexity. 
    more » « less
  5. Abstract Identifying genes that interact to confer a biological function to an organism is one of the main goals of functional genomics. High‐throughput technologies for assessment and quantification of genome‐wide gene expression patterns have enabled systems‐level analyses to infer pathways or networks of genes involved in different functions under many different conditions. Here, we leveraged the publicly available, information‐rich RNA‐Seq datasets of the model plantArabidopsis thalianato construct a gene co‐expression network, which was partitioned into clusters or modules that harbor genes correlated by expression. Gene ontology and pathway enrichment analyses were performed to assess functional terms and pathways that were enriched within the different gene modules. By interrogating the co‐expression network for genes in different modules that associate with a gene of interest, diverse functional roles of the gene can be deciphered. By mapping genes differentially expressing under a certain condition inArabidopsisonto the co‐expression network, we demonstrate the ability of the network to uncover novel genes that are likely transcriptionally active but prone to be missed by standard statistical approaches due to their falling outside of the confidence zone of detection. To our knowledge, this is the firstA. thalianaco‐expression network constructed using the entire mRNA‐Seq datasets (>20,000) available at the NCBI SRA database. The developed network can serve as a useful resource for theArabidopsisresearch community to interrogate specific genes of interest within the network, retrieve the respective interactomes, decipher gene modules that are transcriptionally altered under certain condition or stage, and gain understanding of gene functions. 
    more » « less