Wicked problems are inherent in food–energy–water systems (FEWS) due to the complexity and interconnectedness of these systems, and addressing these challenges necessitates the involvement of the diverse stakeholders in FEWS. However, successful stakeholder engagement requires a strong understanding of the relationships between stakeholders and the specific wicked problem. To better account for these relationships, we adapted a means, motive, and opportunity (MMO) framework to develop a method of stakeholder analysis that evaluates the agency of stakeholders related to a wicked problem in FEWS. This method involves two key components: (1) identification of a challenge at the FEWS nexus and (2) evaluation of stakeholder agency related to the challenge using the dimensions of MMO. This approach provides a method for understanding the characteristics of stakeholders in FEWS and provides information that could be used to inform stakeholder engagement in efforts to address wicked problems at the FEWS nexus. In this article, we present the stakeholder analysis method and describe an example application of the MMO method by examining stakeholder agency related to the adoption of improved swine waste management technology in North Carolina, USA. 
                        more » 
                        « less   
                    
                            
                            Contrasting stakeholder and scientist conceptual models of food-energy-water systems: a case study in Magic Valley, Southern Idaho
                        
                    
    
            One of the factors for the success of simulation studies is close collaboration with stakeholders in developing a conceptual model. Conceptual models are a useful tool for communicating and understanding how real systems work. However, models or frameworks that are not aligned with the perceptions and understanding of local stakeholders can induce uncertainties in the model outcomes. We focus on two sources of epistemic uncertainty in building conceptual models of food-energy-water systems (FEWS): (1) context and framing; and (2) model structure uncertainty. To address these uncertainties, we co-produced a FEWS conceptual model with key stakeholders using the Actor-Resources-Dynamics-Interaction (ARDI) method. The method was adopted to specifically integrate public (and local) knowledge of stakeholders in the Magic Valley region of Southern Idaho into a FEWS model. We first used the ARDI method with scientists and modellers (from various disciplines) conducting research in the system, and then repeated the process with local stakeholders. We compared results from the two cohorts and refined the conceptual model to align with local stakeholders’ understanding of the FEWS. This co-development of a conceptual model with local stakeholders ensured the incorporation of different perspectives and types of knowledge of key actors within the socio-ecological systems models. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10141597
- Date Published:
- Journal Name:
- Socio-Environmental Systems Modelling
- Volume:
- 2
- ISSN:
- 2663-3027
- Page Range / eLocation ID:
- 16312
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Multisectoral models of regional bio-physical systems simulate policy responses to climate change and support climate mitigation and adaptation planning at multiple scales. Challenges facing these efforts include sometimes weak understandings of causal relationships, lack of integrated data streams, spatial and temporal incongruities with policy interests, and how to incorporate dynamics associated with human values, governance structures, and vulnerable populations. There are two general approaches to developing integrated models. The first involves stakeholder involvement in model design -- a participatory modeling approach. The second is to integrate existing models. This can be done in two ways: by integrating existing models or by a soft-linked confederation of existing models. A benefit of utilizing existing models is the leveraging of validated and familiar models that provide credibility. We report opportunities and challenges manifested in one effort to develop a regional food, energy, and water systems (FEWS) modeling framework using existing bio-physical models. The C-FEWS modeling framework (Climate-induced extremes on the linked food, energy, water system) is intended to identify and evaluate response options to extreme weather in the Midwest and Northeast United States thru the year 2100. We interviewed ten modelers associated with development of the C-FEWS framework and ten stakeholders from government agencies, planning agencies, and non-governmental organizations in New England. We inquired about their perspectives on the roles and challenges of regional FEWS modeling frameworks to inform planning and information needed to support planning in integrated food, energy, and water systems. We also analyzed discussions of meetings among modelers and among stakeholders and modelers. These sources reveal many agreements among modelers and stakeholders about the role of modeling frameworks, their benefits for policymakers, and the types of outputs they should produce. They also identify challenges to developing regional modeling frameworks that couple existing models and balancing model capabilities with stakeholder preferences for information. The results indicate the importance of modelers and stakeholders engaging in dialogue to craft modeling frameworks and scenarios that are credible and relevant for policymakers. We reflect on the implications for how FEWS modeling frameworks comprised of existing bio-physical models can be designed to better inform policy making at the regional scale.more » « less
- 
            Sensemaking is conceptualized as a trajectory to develop better understanding and is advocated as one of the fundamental practices in science education. However, the field is lacking of a framework to view the prolonged process of sensemaking that starts from a raise of uncertainty of a target phenomenon to a grasping of a better understanding of a target phenomenon. The process requires teachers to recognize the role of scientific uncertainty in different phases of sensemaking and develop responsive instructional supports to help students navigate the uncertainties. With an attention on student scientific uncertainty as a potential driver of the trajectory of sensemaking, this study aims to identify different phases of sensemaking that can be developed with students’ scientific uncertainty. This study especially attends to two types of scientific uncertainty—conceptual and epistemic uncertainties. Conceptual uncertainty refers to student struggle of using conceptual understanding (e.g., mastery of content and everyday knowledge) to respond to an encountered phenomenon. Epistemic uncertainty emerges from struggles in using epistemic understanding to generate new ideas. Based on the multiple case study method, we examined sensemaking activities in two Korean science classrooms and one American science classroom and identified three phases of sensemaking: (a) focusing on a driving question related to a target phenomenon, (b) delving into multiple resources to develop plausible explanation(s), and (c) examining the successfulness of the new understanding and concretizing it. Based on the findings, we discuss two emerging themes. First, sensemaking progresses through three distinctive phases driven by students’ dynamically evolving scientific uncertainty. Second, attending to both epistemic and conceptual uncertainties can support developing sensemaking coherent with students’ view.more » « less
- 
            null (Ed.)Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus.more » « less
- 
            The Sustainable Groundwater Management Act (SGMA) requires stakeholder participation in developing groundwater sustainability plans (GSPs) to ensure the reliability of groundwater resources. Groundwater models became widely used in GSP development (e.g., to evaluate management actions). This study explores stakeholder perceptions of the benefits and challenges of using these models in GSP development and of models’ abilities to deal with uncertainties arising from existing data gaps. Qualitative interviews and minutes from groundwater advisory committee meetings from three groundwater basins reveal that groundwater models can improve stakeholders’ understanding of the groundwater system and help stakeholders identify management actions. However, model complexity and uncertainty in terms of hydrogeological processes and data gaps hinder stakeholders’ full understanding of the model development and results. Modelers should leverage stakeholder knowledge to build trust and collaboratively improve model accuracy through active participation in the modeling process. To prevent misunderstanding, future and ongoing processes should prioritize transparent communication about the model design, assumptions, and limitations. In general, SGMA’s regulatory process facilitates decision-making amid uncertainty and ensures lasting collaboration between modelers and stakeholders.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    