skip to main content

Search for: All records

Award ID contains: 1856059

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Scientific study of issues at the nexus of food–energy–water systems (FEWS) requires grappling with multifaceted, “wicked” problems. FEWS involve interactions occurring directly and indirectly across complex and overlapping spatial and temporal scales; they are also imbued with diverse and sometimes conflicting meanings for the human and more-than-human beings that live within them. In this paper, we consider the role of language in the dynamics of boundary work, recognizing that the language often used in stakeholder and community engagement intended to address FEWS science and decision-making constructs boundaries and limits diverse and inclusive participation. In contrast, some language systems provide opportunities to build bridges rather than boundaries in engagement. Based on our experiences with engagement in FEWS science and with Indigenous knowledges and languages, we consider examples of the role of language in reflecting worldviews, values, practices, and interactions in FEWS science and engagement. We particularly focus on Indigenous knowledges from Anishinaabe and the language of Anishinaabemowin, contrasting languages of boundaries and bridges through concrete examples. These examples are used to unpack the argument of this work, which is that scientific research aiming to engage FEWS issues in working landscapes requires grappling with embedded, practical understandings. This perspective demonstrates themore »importance of grappling with the role of language in creating boundaries or bridges, while recognizing that training in engagement may not critically reflect on the role of language in limiting diversity and inclusivity in engagement efforts. Leaving this reflexive consideration of language unexamined may unknowingly perpetuate boundaries rather than building bridges, thus limiting the effectiveness of engagement that is intended to address wicked problems in working landscapes.« less
    Free, publicly-accessible full text available June 1, 2023
  2. Moving toward a sustainable global society requires substantial change in both social and technological systems. This sustainability is dependent not only on addressing the environmental impacts of current social and technological systems, but also on addressing the social, economic and political harms that continue to be perpetuated through systematic forms of oppression and the exclusion of Black, Indigenous, and people of color (BIPOC) communities. To adequately identify and address these harms, we argue that scientists, practitioners, and communities need a transdisciplinary framework that integrates multiple types of knowledge, in particular, Indigenous and experiential knowledge. Indigenous knowledge systems embrace relationality and reciprocity rather than extraction and oppression, and experiential knowledge grounds transition priorities in lived experiences rather than expert assessments. Here, we demonstrate how an Indigenous, experiential, and community-based participatory framework for understanding and advancing socio-technological system transitions can facilitate the co-design and co-development of community-owned energy systems.
  3. null (Ed.)
    Community and stakeholder engagement is increasingly recognized as essential to science at the nexus of food, energy, and water systems (FEWS) to address complex issues surrounding food and energy production and water provision for society. Yet no comprehensive framework exists for supporting best practices in community and stakeholder engagement for FEWS. A review and meta-synthesis were undertaken of a broad range of existing models, frameworks, and toolkits for community and stakeholder engagement. A framework is proposed that comprises situational awareness of the FEWS place or problem, creation of a suitable culture for engagement, focus on power-sharing in the engagement process, co-ownership, co-generation of knowledge and outcomes, the technical process of integration, the monitoring processes of reflective and reflexive experiences, and formative evaluation. The framework is discussed as a scaffolding for supporting the development and application of best practices in community and stakeholder engagement in ways that are arguably essential for sound FEWS science and sustainable management.
  4. The state of New York has ambitious mandates for reducing greenhouse gas emissions and increasing renewable energy generation. Solar energy will play an important role in reducing greenhouse gas emissions from the electric energy sector. Concerns over solar installations’ impacts to host communities and the environment have led to growing conflicts over solar energy siting on Long Island, in other parts of New York, and throughout the US. Understanding community members’ perspectives is critical for reducing conflict. Solar energy can be deployed more quickly and at lower cost if projects are structured to address the concerns and meet the needs of the community. This paper presents the results of a survey of residential utility ratepayers that examined their perceptions, preferences, and priorities concerning mid- to large-scale solar development on Long Island (250 kW and larger). The survey asked respondents to consider specific installation types, financial models, and other aspects of solar development. Results indicate that respondents were overwhelmingly supportive of mid- to large-scale solar development in their communities. The most highly supported development types were solar systems on rooftops and solar systems that are co-located with other land uses (mixed use) at a particular site, such as parking canopies, landfills,more »or integration with agriculture. The most highly supported financial models included privately funded projects by local developers and community solar projects. The largest concern about solar development expressed by respondents did not involve tree removal or visibility (as initially hypothesized to be the most significant considerations) but rather the fairness of the distribution of economic benefits associated with solar development. This paper provides concrete insight into particular models of solar development that may invoke less conflict and more community support.« less
  5. One of the factors for the success of simulation studies is close collaboration with stakeholders in developing a conceptual model. Conceptual models are a useful tool for communicating and understanding how real systems work. However, models or frameworks that are not aligned with the perceptions and understanding of local stakeholders can induce uncertainties in the model outcomes. We focus on two sources of epistemic uncertainty in building conceptual models of food-energy-water systems (FEWS): (1) context and framing; and (2) model structure uncertainty. To address these uncertainties, we co-produced a FEWS conceptual model with key stakeholders using the Actor-Resources-Dynamics-Interaction (ARDI) method. The method was adopted to specifically integrate public (and local) knowledge of stakeholders in the Magic Valley region of Southern Idaho into a FEWS model. We first used the ARDI method with scientists and modellers (from various disciplines) conducting research in the system, and then repeated the process with local stakeholders. We compared results from the two cohorts and refined the conceptual model to align with local stakeholders’ understanding of the FEWS. This co-development of a conceptual model with local stakeholders ensured the incorporation of different perspectives and types of knowledge of key actors within the socio-ecological systems models.