skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Milestones in Unraveling the Full-Field Structure of Dynamic Shear Cracks and Fault Ruptures in Real-Time: From Photoelasticity to Ultrahigh-Speed Digital Image Correlation
Abstract The last few decades have seen great achievements in dynamic fracture mechanics. Yet, it was not possible to experimentally quantify the full-field behavior of dynamic fractures, until very recently. Here, we review our recent work on the full-field quantification of the temporal evolution of dynamic shear ruptures. Our newly developed approach based on digital image correlation combined with ultrahigh-speed photography has revolutionized the capabilities of measuring highly transient phenomena and enabled addressing key questions of rupture dynamics. Recent milestones include the visualization of the complete displacement, particle velocity, strain, stress and strain rate fields near growing ruptures, capturing the evolution of dynamic friction during individual rupture growth, and the detailed study of rupture speed limits. For example, dynamic friction has been the biggest unknown controlling how frictional ruptures develop but it has been impossible, until now, to measure dynamic friction during spontaneous rupture propagation and to understand its dependence on other quantities. Our recent measurements allow, by simultaneously tracking tractions and sliding speeds on the rupturing interface, to disentangle its complex dependence on the slip, slip velocity, and on their history. In another application, we have uncovered new phenomena that could not be detected with previous methods, such as the formation of pressure shock fronts associated with “supersonic” propagation of shear ruptures in viscoelastic materials where the wave speeds are shown to depend strongly on the strain rate.  more » « less
Award ID(s):
1651235
PAR ID:
10141609
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
87
Issue:
3
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Frictional heating during earthquake rupture raises the fault-zone fluid pressure, which affects dynamic rupture and seismic radiation. Here, we investigate two key parameters governing thermal pressurization of pore fluids – hydraulic diffusivity and shear-zone half-width – and their effects on earthquake rupture dynamics, kinematic source properties, and ground motions. We conduct 3D strike-slip dynamic rupture simulations assuming a rate-and-state dependent friction law with strong velocity weakening coupled to thermal-pressurization of pore fluids. Dynamic rupture evolution and ground shaking are densely evaluated across the fault and Earth’s surface to analyze the variations of rupture parameters (slip, peak slip rate, rupture speed, and rise time), correlations among rupture parameters, and variability of peak ground velocity. Our simulations reveal how variations in thermal-pressurization affect earthquake rupture properties. We find that the mean slip and rise time decrease with increasing hydraulic diffusivity, whereas mean rupture speed and peak slip-rate remain almost constant. Mean slip, peak slip-rate, and rupture speed decrease with increasing shear-zone half-width, whereas mean rise time increases. Shear-zone half-width distinctly affects the correlation between rupture parameters, especially for parameter pairs (slip, rupture speed), (peak slip-rate, rupture speed), and (rupture speed, rise time). Hydraulic diffusivity has negligible effects on these correlations. Variations in shear-zone half-width primarily impact rupture speed, which then may affect other rupture parameters. We find a negative correlation between slip and peak slip-rate, unlike simpler dynamic rupture models. Mean peak ground velocities decrease faster with increasing shear-zone half-width than with increasing hydraulic diffusivity, whereas ground-motion variability is similarly affected by both the parameters. Our results show that shear-zone half-width affects rupture dynamics, kinematic rupture properties, and ground shaking more strongly than hydraulic diffusivity. We interpret the importance of shear-zone half-width based on the characteristic time of diffusion. Our findings may inform pseudodynamic rupture generators and guide future studies on how to account for thermal-pressurization effects. 
    more » « less
  2. Seismic and geodetic observations show that slow slip events (SSEs) in subduction zones can happen at all temporal and spatial scales and propagate at various velocities. Observation of rapid tremor reversals indicates back‐propagating fronts traveling much faster than the main rupture front. Heterogeneity of fault properties, such as fault roughness, is a ubiquitous feature often invoked to explain this complex behavior, but how roughness affects SSEs is poorly understood. Here we use quasi‐dynamic seismic cycle simulations to model SSEs on a rough fault, using normal stress perturbations as a proxy for roughness and assuming rate‐and‐state friction, with velocity‐weakening friction at low slip rate and velocity‐strengthening at high slip rate. SSEs exhibit temporal clustering, large variations in rupture length and propagation speed, and back‐propagating fronts at different scales. We identify a mechanism for back propagation: as ruptures propagate through low‐normal stress regions, a rapid increase in slip velocity combined with rate‐strengthening friction induces stress oscillations at the rupture tip, and the subsequent “delayed stress drop” induces secondary back‐propagating fronts. Moreover, on rough faults with fractal elevation profiles, the transition from pulse to crack can also lead to the re‐rupture of SSEs due to local variations in the level of heterogeneity. Our study provides a possible mechanism for the complex evolution of SSEs inferred from geophysical observations and its link to fault roughness. 
    more » « less
  3. Abstract Rock friction tests have made profound contributions to our understanding of earthquake processes. Most rock friction tests focused on fault strength evolution during velocity steps or at specific slip rates and the characteristics during stick‐slip events such as dynamic rupture propagation and the transition from stable sliding to instability, with little attention paid to the transient acceleration and deceleration periods. Here, we present Westerly Granite fault friction test results using a unique pneumatically powered apparatus with high acceleration of up to 50 g, focusing on the transient stages of fast fault acceleration and deceleration during both high‐speed sliding and stick‐slip events. Our data demonstrates the dominating velocity‐weakening behavior at transient stages of fault acceleration and deceleration, with a 1/V dependence for peak friction and deceleration lobe consistent with the flash‐heating model but with the acceleration lobe consistently deviating from the 1/V dependence. Our analysis of velocity‐dependent friction between dynamic rupture events, stick‐slips, and high‐speed friction tests reveals the significance of high acceleration in influencing transient fault weakening during dynamic weakening. We further demonstrate that the deviation of the friction‐velocity curve from the 1/V trend during fault acceleration is associated with the contribution of the dynamic rupturing process during the initiation of fault slip. 
    more » « less
  4. Abstract. Substantial insight into earthquake source processes has resulted from considering frictional ruptures analogous to cohesive-zone shear cracks from fracture mechanics. This analogy holds for slip-weakening representations of fault friction that encapsulate the resistance to rupture propagation in the form of breakdown energy, analogous to fracture energy, prescribed in advance as if it were a material property of the fault interface. Here, we use numerical models of earthquake sequences with enhanced weakening due to thermal pressurization of pore fluids to show how accounting for thermo-hydro-mechanical processes during dynamic shear ruptures makes breakdown energy rupture-dependent. We find that local breakdown energy is neither a constant material property nor uniquely defined by the amount of slip attained during rupture, but depends on how that slip is achieved through the history of slip rate and dynamic stress changes during the rupture process. As a consequence, the frictional breakdown energy of the same location along the fault can vary significantly in different earthquake ruptures that pass through. These results suggest the need to reexamine the assumption of predetermined frictional breakdown energy common in dynamic rupture modeling and to better understand the factors that control rupture dynamics in the presence of thermo-hydro-mechanical processes. 
    more » « less
  5. Abstract We present an efficient numerical method for earthquake sequences in 2D antiplane shear that incorporates wave propagation. A vertical strike‐slip fault governed by rate‐and‐state friction is embedded in a heterogeneous elastic half‐space discretized using a high‐order accurate Summation‐by‐Parts finite difference method. Adaptive time‐stepping is applied during the interseismic periods; during coseismic rupture we apply a non‐stiff method, enabling a variety of explicit time stepping methods. We consider a shallow sedimentary basin and explore sensitivity to spatial resolution and the switching criteria used to transition between solvers. For sufficient grid resolution and switching thresholds, simulations results remain robust over long time scales. We explore the effects of full dynamics and basin depth and stiffness, making comparisons with quasi‐dynamic counterparts. Fully‐dynamic ruptures generate higher stresses, faster slip rates and rupture speeds, producing seismic scattering in the bulk. Because single‐event dynamic simulations penetrate further into sediments compared to the quasi‐dynamic simulations, we hypothesize that the incorporation of inertial effects would produce sequences of only surface‐rupturing events. However, we find that subbasin ruptures can still emerge with elastodynamics, for sufficiently compliant basins. We also find that full dynamics can increase the frequency of surface‐rupturing events, depending on basin depth and stiffness. These results suggest that an earthquake's potential to penetrate into shallow sediments should be viewed through the lens of the earthquake sequence, as it depends on basin properties and wave‐mediated effects, but also on self‐consistent initial conditions obtained from seismogenic cycling. 
    more » « less