skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smallest k-Enclosing Rectangle Revisited
Given a set of n points in the plane, and a parameter k, we consider the problem of computing the minimum (perimeter or area) axis-aligned rectangle enclosing k points. We present the first near quadratic time algorithm for this problem, improving over the previous near-O(n^{5/2})-time algorithm by Kaplan et al. [Haim Kaplan et al., 2017]. We provide an almost matching conditional lower bound, under the assumption that (min,+)-convolution cannot be solved in truly subquadratic time. Furthermore, we present a new reduction (for either perimeter or area) that can make the time bound sensitive to k, giving near O(n k) time. We also present a near linear time (1+epsilon)-approximation algorithm to the minimum area of the optimal rectangle containing k points. In addition, we study related problems including the 3-sided, arbitrarily oriented, weighted, and subset sum versions of the problem.  more » « less
Award ID(s):
1814026
PAR ID:
10141616
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proc. Sympos. Computational Geometry (SoCG)
Page Range / eLocation ID:
23:1-23:15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chambers, Erin W.; Gudmundsson, Joachim (Ed.)
    We present a (combinatorial) algorithm with running time close to O(n^d) for computing the minimum directed L_∞ Hausdorff distance between two sets of n points under translations in any constant dimension d. This substantially improves the best previous time bound near O(n^{5d/4}) by Chew, Dor, Efrat, and Kedem from more than twenty years ago. Our solution is obtained by a new generalization of Chan’s algorithm [FOCS'13] for Klee’s measure problem. To complement this algorithmic result, we also prove a nearly matching conditional lower bound close to Ω(n^d) for combinatorial algorithms, under the Combinatorial k-Clique Hypothesis. 
    more » « less
  2. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    We study the time complexity of the discrete k-center problem and related (exact) geometric set cover problems when k or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in Õ(n^{3/2}) time. - We prove a lower bound of Ω(n^{4/3-δ}) for rectilinear discrete 3-center in 4D, for any constant δ > 0, under a standard hypothesis about triangle detection in sparse graphs. - Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in Õ(n^{8/5}) time. We also prove a lower bound of Ω(n^{3/2-δ}) for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is Õ(n^{7/4}). - We prove a lower bound of Ω(n^{2-δ}) for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(n^ω), if the matrix multiplication exponent ω is equal to 2. - We similarly prove an Ω(n^{k-δ}) lower bound for Euclidean discrete k-center in O(k) dimensions for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if ω = 2. - We also prove an Ω(n^{2-δ}) lower bound for the problem of finding 2 boxes to cover the largest number of points, given n points and n boxes in 12D . This matches the straightforward near-quadratic upper bound. 
    more » « less
  3. Mestre, Julián; Wirth, Anthony (Ed.)
    For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in O(n log n) time where n is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings. Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of O(√n). It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an O(log n)-factor approximation algorithm for the general case. 
    more » « less
  4. null (Ed.)
    We consider the problem of explainable k-medians and k-means introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). In this problem, our goal is to find a threshold decision tree that partitions data into k clusters and minimizes the k-medians or k-means objective. The obtained clustering is easy to interpret because every decision node of a threshold tree splits data based on a single feature into two groups. We propose a new algorithm for this problem which is O(log k) competitive with k-medians with ℓ1 norm and O(k) competitive with k-means. This is an improvement over the previous guarantees of O(k) and O(k^2) by Dasgupta et al (2020). We also provide a new algorithm which is O(log^{3}{2}k) competitive for k-medians with ℓ2 norm. Our first algorithm is near-optimal: Dasgupta et al (2020) showed a lower bound of Ω(log k) for k-medians; in this work, we prove a lower bound of Ω(k) for k-means. We also provide a lower bound of Ω(log k) for k-medians with ℓ2 norm. 
    more » « less
  5. We present new results on a number of fundamental problems about dynamic geometric data structures: 1) We describe the first fully dynamic data structures with sublinear amortized update time for maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the largest empty circle for a 2D point set, (iii) the Hausdorff distance between two 2D point sets, (iv) the discrete 1-center of a 2D point set, (v) the number of maximal (i.e., skyline) points in a 3D point set. The update times are near n^{11/12} for (i) and (ii), n^{7/8} for (iii) and (iv), and n^{2/3} for (v). Previously, sublinear bounds were known only for restricted "semi-online" settings [Chan, SODA 2002]. 2) We slightly improve previous fully dynamic data structures for answering extreme point queries for the convex hull of a 3D point set and nearest neighbor search for a 2D point set. The query time is O(log^2n), and the amortized update time is O(log^4n) instead of O(log^5n) [Chan, SODA 2006; Kaplan et al., SODA 2017]. 3) We also improve previous fully dynamic data structures for maintaining the bichromatic closest pair between two 2D point sets and the diameter of a 2D point set. The amortized update time is O(log^4n) instead of O(log^7n) [Eppstein 1995; Chan, SODA 2006; Kaplan et al., SODA 2017]. 
    more » « less