Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. Previously, Hershberger and Suri (in SIAM Journal on Computing , 1999) gave an algorithm of O(n log n ) time and O(n log n ) space, where n is the total number of vertices of all obstacles. Recently, by modifying Hershberger and Suri’s algorithm, Wang (in SODA’21) reduced the space to O(n) while the runtime of the algorithm is still O(n log n ). In this article, we present a new algorithm of O(n+h log h ) time and O(n) space, provided that a triangulation of the free space is given, where h is the number of obstacles. The algorithm is better than the previous work when h is relatively small. Our algorithm builds a shortest path map for a source point s so that given any query point t , the shortest path length from s to t can be computed in O (log n ) time and a shortest s - t path can be produced in additional time linear in the number of edges of the path. 
                        more » 
                        « less   
                    
                            
                            Minimum Plane Bichromatic Spanning Trees
                        
                    
    
            For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in O(n log n) time where n is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings. Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of O(√n). It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an O(log n)-factor approximation algorithm for the general case. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10563319
- Editor(s):
- Mestre, Julián; Wirth, Anthony
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 322
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-354-6
- Page Range / eLocation ID:
- 322-322
- Subject(s) / Keyword(s):
- Bichromatic Spanning Tree Minimum Spanning Tree Plane Tree Theory of computation → Computational geometry
- Format(s):
- Medium: X Size: 14 pages; 896649 bytes Other: application/pdf
- Size(s):
- 14 pages 896649 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)In this paper we study a few proximity problems related to a set of pairwise-disjoint segments in {ℝ}². Let S be a set of n pairwise-disjoint segments in {ℝ}², and let r > 0 be a parameter. We define the segment proximity graph of S to be G_r(S) := (S,E), where E = {(e₁,e₂) ∣ dist(e₁,e₂) ≤ r} and dist (e₁,e₂) = min_{(p,q) ∈ e₁× e₂} ‖p-q‖ is the Euclidean distance between e₁ and e₂. We define the weight of an edge (e₁,e₂) ∈ E to be dist(e₁,e₂). We first present a simple grid-based O(nlog² n)-time algorithm for computing a BFS tree of G_r(S). We apply it to obtain an O^*(n^{6/5}) + O(nlog²nlogΔ)-time algorithm for the so-called reverse shortest path problem, in which we want to find the smallest value r^* for which G_{r^*}(S) contains a path of some specified length between two designated start and target segments (where the O^*(⋅) notation hides polylogarithmic factors). Here Δ = max_{e ≠ e' ∈ S} dist(e,e')/min_{e ≠ e' ∈ S} dist(e,e') is the spread of S. Next, we present a dynamic data structure that can maintain a set S of pairwise-disjoint segments in the plane under insertions/deletions, so that, for a query segment e from an unknown set Q of pairwise-disjoint segments, such that e does not intersect any segment in (the current version of) S, the segment of S closest to e can be computed in O(log⁵ n) amortized time. The amortized update time is also O(log⁵ n). We note that if the segments in S∪Q are allowed to intersect then the known lower bounds on halfplane range searching suggest that a sequence of n updates and queries may take at least close to Ω(n^{4/3}) time. One thus has to strongly rely on the non-intersecting property of S and Q to perform updates and queries in O(polylog(n)) (amortized) time each. Using these results on nearest-neighbor (NN) searching for disjoint segments, we show that a DFS tree (or forest) of G_r(S) can be computed in O^*(n) time. We also obtain an O^*(n)-time algorithm for constructing a minimum spanning tree of G_r(S). Finally, we present an O^*(n^{4/3})-time algorithm for computing a single-source shortest-path tree in G_r(S). This is the only result that does not exploit the disjointness of the input segments.more » « less
- 
            null (Ed.)We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.more » « less
- 
            Felsner, Stefan; Klein, Karsten (Ed.)Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing.more » « less
- 
            We present the first near-linear-time algorithm that computes a (1+ε)-approximation of the diameter of a weighted unit-disk graph of n vertices. Our algorithm requires O(n log^2 n) time for any constant ε>0, so we considerably improve upon the near-O(n^{3/2})-time algorithm of Gao and Zhang (2005). Using similar ideas we develop (1+ε)-approximate \emph{distance oracles} of O(1) query time with a likewise improvement in the preprocessing time, specifically from near O(n^{3/2}) to O(n log^3 n). We also obtain similar new results for a number of related problems in the weighted unit-disk graph metric such as the radius and the bichromatic closest pair. As a further application we employ our distance oracle, along with additional ideas, to solve the (1+ε)-approximate \emph{all-pairs bounded-leg shortest paths\/} (apBLSP) problem for a set of n planar points. Our data structure requires O(n^2 log n) space, O(loglog n) query time, and nearly O(n^{2.579}) preprocessing time for any constant ε>0, and is the first that breaks the near-cubic preprocessing time bound given by Roditty and Segal (2011).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    