skip to main content


Title: The Polynomial Method Strikes Back: Tight Quantum Query Bounds via Dual Polynomials
The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017).  more » « less
Award ID(s):
1947889
NSF-PAR ID:
10205756
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Theory of computing
Volume:
16
Issue:
2020
ISSN:
1557-2862
Page Range / eLocation ID:
1-72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let f be an m -bit Boolean function and consider an n -bit function F obtained by applying f to conjunctions of possibly overlapping subsets of n variables. If f has quantum query complexity Q ( f ) , we give an algorithm for evaluating F using O ~ ( Q ( f ) ⋅ n ) quantum queries. This improves on the bound of O ( Q ( f ) ⋅ n ) that follows by treating each conjunction independently, and our bound is tight for worst-case choices of f . Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of f .By recursively applying our composition theorems, we obtain a nearly optimal O ~ ( n 1 − 2 − d ) upper bound on the quantum query complexity and approximate degree of linear-size depth- d AC 0 circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC 0 circuits.As an additional consequence, we show that AC 0 ∘ ⊕ circuits of depth d + 1 require size Ω ~ ( n 1 / ( 1 − 2 − d ) ) ≥ ω ( n 1 + 2 − d ) to compute the Inner Product function even on average. The previous best size lower bound was Ω ( n 1 + 4 − ( d + 1 ) ) and only held in the worst case (Cheraghchi et al., JCSS 2018). 
    more » « less
  2. Fawzi, Omar ; Walter, Michael (Ed.)
    The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string x ∈ {0, 1}ⁿ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of x. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of Ω(n/log² n) for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions. 
    more » « less
  3. We prove two new results about the inability of low-degree polynomials to uniformly approximate constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight Omega~(n^{1/2}) lower bound on the threshold degree of the SURJECTIVITY function on n variables. This matches the best known threshold degree bound for any AC^0 function, previously exhibited by a much more complicated circuit of larger depth (Sherstov, FOCS 2015). Our result also extends to a 2^{Omega~(n^{1/2})} lower bound on the sign-rank of an AC^0 function, improving on the previous best bound of 2^{Omega(n^{2/5})} (Bun and Thaler, ICALP 2016). Second, for any delta>0, we exhibit a function f : {-1,1}^n -> {-1,1} that is computed by a circuit of depth O(1/delta) and is hard to approximate by polynomials in the following sense: f cannot be uniformly approximated to error epsilon=1-2^{-Omega(n^{1-delta})}, even by polynomials of degree n^{1-delta}. Our recent prior work (Bun and Thaler, FOCS 2017) proved a similar lower bound, but which held only for error epsilon=1/3. Our result implies 2^{Omega(n^{1-delta})} lower bounds on the complexity of AC^0 under a variety of basic measures such as discrepancy, margin complexity, and threshold weight. This nearly matches the trivial upper bound of 2^{O(n)} that holds for every function. The previous best lower bound on AC^0 for these measures was 2^{Omega(n^{1/2})} (Sherstov, FOCS 2015). Additional applications in learning theory, communication complexity, and cryptography are described. 
    more » « less
  4. The NLTS (No Low-Energy Trivial State) conjecture [M. H. Freedman and M. B. Hastings, Quantum Inf. Comput. 14, 144 (2014)] posits that there exist families of Hamiltonians with all low energy states of high complexity (with complexity measured by the quantum circuit depth preparing the state). Here, we prove a weaker version called the combinatorial no low error trivial states (NLETS), where a quantum circuit lower bound is shown against states that violate a (small) constant fraction of local terms. This generalizes the prior NLETS results [L. Eldar and A. W. Harrow, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2017), pp. 427–438] and [Nirkhe et al., in 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Leibniz International Proceedings in Informatics (LIPIcs), edited by Chatzigiannakis et al. (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018), Vol. 107, pp. 1–11]. Our construction is obtained by combining tensor networks with expander codes [M. Sipser and D. Spielman, IEEE Trans. Inf. Theory 42, 1710 (1996)]. The Hamiltonian is the parent Hamiltonian of a perturbed tensor network, inspired by the “uncle Hamiltonian” of Fernández-González et al. [Commun. Math. Phys. 333, 299 (2015)]. Thus, we deviate from the quantum Calderbank-Shor-Steane (CSS) code Hamiltonians considered in most prior works. 
    more » « less
  5. We design a nonadaptive algorithm that, given a Boolean function f: {0, 1}^n → {0, 1} which is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with high probability, is an O-tilde(\sqrt{n})-approximation to the distance of f to monotonicity. Furthermore, we show that for any constant k > 0, approximating the distance to monotonicity up to n^(1/2−k)-factor requires 2^{n^k} nonadaptive queries, thereby ruling out a poly(n, 1/α)-query nonadaptive algorithm for such approximations. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property is closely related to tolerantly testing that property. Our lower bound stands in contrast to standard (non-tolerant) testing of monotonicity that can be done nonadaptively with O-tilde(n/ε^2) queries. We obtain our lower bound by proving an analogous bound for erasure-resilient testers. An α-erasure-resilient tester for a desired property gets oracle access to a function that has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the erasures can be filled in to ensure that the resulting function has the property and to reject (with probability at least 2/3) if every completion of erasures results in a function that is ε-far from having the property. Our method yields the same lower bounds for unateness and being a k-junta. These lower bounds improve exponentially on the existing lower bounds for these properties. 
    more » « less