Given a function f on (F_2_^n, we study the following problem. What is the largest affine subspace U such that when restricted to U, all the non-trivial Fourier coefficients of f are very small? For the natural class of bounded Fourier degree d functions f : (F_2)^n → [−1, 1], we show that there exists an affine subspace of dimension at least ˜Ω (n^(1/d!) k^(−2)), wherein all of f ’s nontrivial Fourier coefficients become smaller than 2^(−k) . To complement this result, we show the existence of degree d functions with coefficients larger than 2^(−d log n) when restricted to any affine subspace of dimension larger than Ω(dn^(1/(d−1))). In addition, we give explicit examples of functions with analogous but weaker properties. Along the way, we provide multiple characterizations of the Fourier coefficients of functions restricted to subspaces of (F_2)^n that may be useful in other contexts. Finally, we highlight applications and connections of our results to parity kill number and affine dispersers.
more »
« less
Searching for Regularity in Bounded Functions
This work studies the problem of finding a large affine subspace over the field F_2 such that a bounded function's nontrivial Fourier coefficients become small. We show that for any function f from F_2^n to [-1,1] with Fourier degree d, there exists an affine subspace of dimension at least roughly n^{1/d!}k^{-2}), wherein all of f's nontrivial Fourier coefficients become smaller than 2^{-k}. To complement this result, we show the existence of degree d functions with coefficients larger than 2^{-d log n} on any subspace of dimension larger than Omega(dn^{1/(d-1)}). In addition, we give explicit examples of functions with analogous but weaker properties. Along the way, we provide multiple characterizations of the Fourier coefficients of functions restricted to subspaces of $$\F_2^n$$ that may be useful in other contexts. Finally, we highlight applications and connections of our results to parity kill number and affine dispersers/extractors.
more »
« less
- Award ID(s):
- 2006359
- PAR ID:
- 10343605
- Date Published:
- Journal Name:
- Electronic colloquium on computational complexity
- Volume:
- TR22
- Issue:
- 109
- ISSN:
- 1433-8092
- Page Range / eLocation ID:
- 1-26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We initiate a systematic study of linear sketching over F_2. For a given Boolean function treated as f : F_2^n -> F_2 a randomized F_2-sketch is a distribution M over d x n matrices with elements over F_2 such that Mx suffices for computing f(x) with high probability. Such sketches for d << n can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between F_2-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that F_2-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree F_2-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that F_2-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over F_2 can be constructed as F_2-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC'14) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require the stream length to be triply exponential in n and holds for streams of length O(n) constructed through uniformly random updates.more » « less
-
Abstract A conjecture of Kalai asserts that for $$d\geq 4$$, the affine type of a prime simplicial $$d$$-polytope $$P$$ can be reconstructed from the space of affine $$2$$-stresses of $$P$$. We prove this conjecture for all $$d\geq 5$$. We also prove the following generalization: for all pairs $(i,d)$ with $$2\leq i\leq \lceil \frac d 2\rceil -1$$, the affine type of a simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-i+1$$ can be reconstructed from the space of affine $$i$$-stresses of $$P$$. A consequence of our proofs is a strengthening of the Generalized Lower Bound Theorem: it was proved by Nagel that for any simplicial $(d-1)$-sphere $$\Delta $$ and $$1\leq k\leq \lceil \frac {d}{2}\rceil -1$$, $$g_{k}(\Delta )$$ is at least as large as the number of missing $(d-k)$-faces of $$\Delta $$; here we show that, for $$1\leq k\leq \lfloor \frac {d}{2}\rfloor -1$$, equality holds if and only if $$\Delta $$ is $$k$$-stacked. Finally, we show that for $$d\geq 4$$, any simplicial $$d$$-polytope $$P$$ that has no missing faces of dimension $$\geq d-1$$ is redundantly rigid, that is, for each edge $$e$$ of $$P$$, there exists an affine $$2$$-stress on $$P$$ with a non-zero value on $$e$$.more » « less
-
The epsilon-approximate degree, deg_epsilon(f), of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are: - We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution. - We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d <= n/64, any degree d polynomial approximating a symmetric function f to error 1/3 must have coefficients of l_1-norm at least K^{-3/2} * exp ({Omega (deg_{1/3}(f)^2/d)}). We also show this bound is essentially tight for any d > deg_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND.more » « less
-
An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications.more » « less
An official website of the United States government

