Abstract Plant-pollinator interaction networks are dynamic in time and space. Interaction turnover consists of interaction rewiring (i.e., changes in interactions independent of species turnover) and species turnover (i.e., the gain or loss of species present in the network). To capture network dynamics, it is crucial to address the effect of sampling effort because insufficient data can distort apparent network patterns. We used eight years of plant-pollinator interaction data from a subalpine meadow to examine patterns of temporal (week-to-week) interaction turnover and the role of sampling effort. With increasing sampling effort, values of interaction turnover and species turnover decreased, and rewiring increased. Saturation curves suggest an approach towards true values with higher sampling effort. Across the eight years, substantial variation in weekly and seasonal interaction turnover was observed, with identifiable seasonal trends across all aggregated years. These results demonstrated that the interpretation of interaction turnover and its components is sensitive to sampling effort, stressing the importance of considering its role in network studies.
more »
« less
Blue-Noise Sampling of Signals on Graphs
In this work, we introduce the concept of blue noise sampling, traditionally used in imaging applications, for band limited signals on graphs. We show how the spectral and vertex domain characterization of these patterns is connected with results about the quality of the sampling sets already existing in the literature. We provide numerical evidence that shows that these patterns are also competitive with respect to the state of the art sampling techniques in terms of the reconstruction error.
more »
« less
- Award ID(s):
- 1816003
- PAR ID:
- 10142470
- Date Published:
- Journal Name:
- 2019 13th International conference on Sampling Theory and Applications (SampTA)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we present a 3D single-particle tracking system that can apply tailored sampling patterns to selectively extract photons that yield the most information for particle localization. We demonstrate that off-center sampling at locations predicted by Fisher information utilizes photons most efficiently. When performing localization in a single dimension, optimized off-center sampling patterns gave doubled precision compared to uniform sampling. A ~20% increase in precision compared to uniform sampling can be achieved when a similar off-center pattern is used in 3D localization. Here, we systematically investigated the photon efficiency of different emission patterns in a diffraction-limited system and achieved higher precision than uniform sampling. The ability to maximize information from the limited number of photons demonstrated here is critical for particle tracking applications in biological samples, where photons may be limited.more » « less
-
Abstract Understanding the amount of space required by animals to fulfill their biological needs is essential for comprehending their behavior, their ecological role within their community, and for effective conservation planning and resource management. The space-use patterns of habituated primates often are studied by using handheld GPS devices, which provide detailed movement information that can link patterns of ranging and space-use to the behavioral decisions that generate these patterns. However, these data may not accurately represent an animal’s total movements, posing challenges when the desired inference is at the home range scale. To address this problem, we used a 13-year dataset from 11 groups of white-faced capuchins (Cebus capucinus imitator) to examine the impact of sampling elements, such as sample size, regularity, and temporal coverage, on home range estimation accuracy. We found that accurate home range estimation is feasible with relatively small absolute sample sizes and irregular sampling, as long as the data are collected over extended time periods. Also, concentrated sampling can lead to bias and overconfidence due to uncaptured variations in space use and underlying movement behaviors. Sampling protocols relying on handheld GPS for home range estimation are improved by maximizing independent location data distributed across time periods much longer than the target species’ home range crossing timescale.more » « less
-
Bats host a number of pathogens that cause severe disease and onward transmission in humans and domestic animals. Some of these pathogens, including henipaviruses and filoviruses, are considered a concern for future pandemics. There has been substantial effort to identify these viruses in bats. However, the reservoir hosts for Ebola virus are still unknown and henipaviruses are largely uncharacterized across their distribution. Identifying reservoir species is critical in understanding the viral ecology within these hosts and the conditions that lead to spillover. We collated surveillance data to identify taxonomic patterns in prevalence and seroprevalence and to assess sampling efforts across species. We systematically collected data on filovirus and henipavirus detections and used a machine-learning algorithm, phylofactorization, in order to search the bat phylogeny for cladistic patterns in filovirus and henipavirus infection, accounting for sampling efforts. Across sampled bat species, evidence for filovirus infection was widely dispersed across the sampled phylogeny. We found major gaps in filovirus sampling in bats, especially in Western Hemisphere species. Evidence for henipavirus infection was clustered within the Pteropodidae; however, no other clades have been as intensely sampled. The major predictor of filovirus and henipavirus exposure or infection was sampling effort. Based on these results, we recommend expanding surveillance for these pathogens across the bat phylogenetic tree.more » « less
-
null (Ed.)Observing multiple size classes of organisms, along with oceanographic properties and water mass origins, can improve our understanding of the drivers of aggregations, yet acquiring these measurements remains a fundamental challenge in biological oceanography. By deploying multiple biological sampling systems, from conventional bottle and net sampling to in situ imaging and acoustics, we describe the spatial patterns of different size classes of marine organisms (several microns to ∼10 cm) in relation to local and regional (m to km) physical oceanographic conditions on the Delaware continental shelf. The imaging and acoustic systems deployed included (in ascending order of target organism size) an imaging flow cytometer (CytoSense), a digital holographic imaging system (HOLOCAM), an In Situ Ichthyoplankton Imaging System (ISIIS, 2 cameras with different pixel resolutions), and multi-frequency acoustics (SIMRAD, 18 and 38 kHz). Spatial patterns generated by the different systems showed size-dependent aggregations and differing connections to horizontal and vertical salinity and temperature gradients that would not have been detected with traditional station-based sampling (∼9-km resolution). A direct comparison of the two ISIIS cameras showed composition and spatial patchiness changes that depended on the organism size, morphology, and camera pixel resolution. Large zooplankton near the surface, primarily composed of appendicularians and gelatinous organisms, tended to be more abundant offshore near the shelf break. This region was also associated with high phytoplankton biomass and higher overall organism abundances in the ISIIS, acoustics, and targeted net sampling. In contrast, the inshore region was dominated by hard-bodied zooplankton and had relatively low acoustic backscatter. The nets showed a community dominated by copepods, but they also showed high relative abundances of soft-bodied organisms in the offshore region where these organisms were quantified by the ISIIS. The HOLOCAM detected dense patches of ciliates that were too small to be captured in the nets or ISIIS imagery. This near-simultaneous deployment of different systems enables the description of the spatial patterns of different organism size classes, their spatial relation to potential prey and predators, and their association with specific oceanographic conditions. These datasets can also be used to evaluate the efficacy of sampling techniques, ultimately aiding in the design of efficient, hypothesis-driven sampling programs that incorporate these complementary technologies.more » « less
An official website of the United States government

