Proton beam radiotherapy is a method of cancer treatment that uses proton beams to irradiate cancerous tissue, while minimizing doses to healthy tissue. In order to guarantee that the prescribed radiation dose is delivered to the tumor and ensure that healthy tissue is spared, many researchers have suggested verifying the treatment delivery through the use of real-time imaging using methods which can image prompt gamma rays that are emitted along the beam’s path through the patient such as Compton cameras (CC). However, because of limitations of the CC, their images are noisy and unusable for verifying proton treatment delivery. We provide a detailed description of a deep residual fully connected neural network that is capable of classifying and improving measured CC data with an increase in the fraction of usable data by up to 72% and allows for improved image reconstruction across the full range of clinical treatment delivery conditions. 
                        more » 
                        « less   
                    
                            
                            Classifying Small Volumes of Tissue for Real-Time Monitoring Radiofrequency Ablation
                        
                    
    
            An increasingly-popular treatment for ablation of cancerous and non-cancerous masses is thermal ablation by radiofrequency joule heating. Real-time monitoring of the thermal tissue ablation process is essential in order to maintain the reliability of the treatment technique. Common methods for monitoring the extent of ablation have proven to be accurate, though they are time-consuming and often require powerful computers to run on, which makes the clinical ablation process more cumbersome and expensive due to the time-dependent nature of the clinical procedure. In this study, a Machine Learning (ML) approach is presented to reduce the time to calculate the progress of ablation while keeping the accuracy of the conventional methods. Different setups were used to perform the ablation and collect impedance data at the same time and different ML algorithms were tested to predict the ablation depth in three dimensions, based on the collected data. In the end, it is shown that an optimal pair of hardware setup and ML algorithm were able to control the ablation by estimating the lesion depth within an average of micrometer-magnitude error range while keeping the estimation time within 5.5 s on conventional x86-64 computing hardware. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1738541
- PAR ID:
- 10142646
- Date Published:
- Journal Name:
- Conference on Artificial Intelligence in Medicine in Europe
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Thin‐film solid‐state metal dealloying (thin‐film SSMD) is a promising method for fabricating nanostructures with controlled morphology and efficiency, offering advantages over conventional bulk materials processing methods for integration into practical applications. Although machine learning (ML) has facilitated the design of dealloying systems, the selection of key thermal treatment parameters for nanostructure formation remains largely unknown and dependent on experimental trial and error. To overcome this challenge, a workflow enabling high‐throughput characterization of thermal treatment parameters is demonstrated using a laser‐based thermal treatment to create temperature gradients on single thin‐film samples of Nb‐Al/Sc and Nb‐Al/Cu. This continuous thermal space enables observation of dealloying transitions and the resulting nanostructures of interest. Through synchrotron X‐ray multimodal and high‐throughput characterization, critical transitions and nanostructures can be rapidly captured and subsequently verified using electron microscopy. The key temperatures driving chemical reactions and morphological evolutions are clearly identified. While the oxidation may influence nanostructure formation during thin‐film treatment, the dealloying process at the dealloying front involves interactions solely between the dealloying elements, highlighting the availability and viability of the selected systems. This approach enables efficient exploration of the dealloying process and validation of ML predictions, thereby accelerating the discovery of thin‐film SSMD systems with targeted nanostructures.more » « less
- 
            Abstract Real-time thermal monitoring and regulation are critical to the mitigation of thermal runaways and device failures in two-phase cooling systems. Compared to conventional approaches that rely on the Joule effect, thermal gradient or transverse thermoelectric effect, acoustic emission (AE)-based remote sensing is more promising for robust and non-intrusive thermal monitoring. Nevertheless, due to the high stochasticity and noise of acoustic signals, existing implementations of AE in thermal systems have been limited to qualitative state monitoring. In this paper, we present a technology for real-time heat flux quantification during two-phase cooling by coupling acoustic sensing using hydrophones and condenser microphones and regression-based machine learning frameworks. These frameworks integrate a fast Fourier transform feature extraction algorithm with regressors, i.e., Gaussian process regressor and multilayer perceptron regressor for heat flux predictions. The acoustic signals and heat fluxes are collected from pool boiling tests under transient heat loads. It is shown that both hydrophone and condenser microphone signals are successful in predicting heat flux. Multiple models are trained and compared some using only one form of acoustic data while others combine both acoustic types (i.e., hydrophone and microphone) in fusion ML models (i.e., early, joint, late). The models using only hydrophone data are shown to perform better than the models using only microphone data. Also, some forms of fusion are shown to have better performance than either of the single input data type models. This AE-ML technology is demonstrated for accurate heatflux quantification. As such, this work will not only lead to a light, low-cost, and non-contact thermal measurement technology but also a new perspective for the physical explanation of bubble dynamics during boiling.more » « less
- 
            Previously, the analysis of atomic force microscopy (AFM) images allowed us to distinguish normal from cancerous/precancerous human epithelial cervical cells using only the fractal dimension parameter. High-resolution maps of adhesion between the AFM probe and the cell surface were used in that study. However, the separation of cancerous and precancerous cells was rather poor (the area under the curve (AUC) was only 0.79, whereas the accuracy, sensitivity, and specificity were 74%, 58%, and 84%, respectively). At the same time, the separation between premalignant and malignant cells is the most significant from a clinical point of view. Here, we show that the introduction of machine learning methods for the analysis of adhesion maps allows us to distinguish precancerous and cancerous cervical cells with rather good precision (AUC, accuracy, sensitivity, and specificity are 0.93, 83%, 92%, and 78%, respectively). Substantial improvement in sensitivity is significant because of the unmet need in clinical practice to improve the screening of cervical cancer (a relatively low specificity can be compensated by combining this approach with other currently existing screening methods). The random forest decision tree algorithm was utilized in this study. The analysis was carried out using the data of six precancerous primary cell lines and six cancerous primary cell lines, each derived from different humans. The robustness of the classification was verified using K-fold cross-validation (K = 500). The results are statistically significant at p < 0.0001. Statistical significance was determined using the random shuffle method as a control.more » « less
- 
            Understanding thermal stress evolution in metal additive manufacturing (AM) is crucial for producing high-quality components. Recent advancements in machine learning (ML) have shown great potential for modeling complex multiphysics problems in metal AM. While physics-based simulations face the challenge of high computational costs, conventional data-driven ML models require large, labeled training datasets to achieve accurate predictions. Unfortunately, generating large datasets for ML model training through time-consuming experiments or high-fidelity simulations is highly expensive in metal AM. To address these challenges, this study introduces a physics-informed neural network (PINN) framework that incorporates governing physical laws into deep neural networks (NNs) to predict temperature and thermal stress evolution during the laser metal deposition (LMD) process. The study also discusses enhanced accuracy and efficiency of the PINN model when supplemented with small simulation data. Furthermore, it highlights the PINN transferability, enabling fast predictions with a set of new process parameters using a pre-trained PINN model as an online soft sensor, significantly reducing computation time compared to physics-based numerical models while maintaining accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    