skip to main content

Title: A Novel Sparse Compositional Technique Reveals Microbial Perturbations
ABSTRACT The central aims of many host or environmental microbiome studies are to elucidate factors associated with microbial community compositions and to relate microbial features to outcomes. However, these aims are often complicated by difficulties stemming from high-dimensionality, non-normality, sparsity, and the compositional nature of microbiome data sets. A key tool in microbiome analysis is beta diversity, defined by the distances between microbial samples. Many different distance metrics have been proposed, all with varying discriminatory power on data with differing characteristics. Here, we propose a compositional beta diversity metric rooted in a centered log-ratio transformation and matrix completion called robust Aitchison PCA. We demonstrate the benefits of compositional transformations upstream of beta diversity calculations through simulations. Additionally, we demonstrate improved effect size, classification accuracy, and robustness to sequencing depth over the current methods on several decreased sample subsets of real microbiome data sets. Finally, we highlight the ability of this new beta diversity metric to retain the feature loadings linked to sample ordinations revealing salient intercommunity niche feature importance. IMPORTANCE By accounting for the sparse compositional nature of microbiome data sets, robust Aitchison PCA can yield high discriminatory power and salient feature ranking between microbial niches. The software to perform more » this analysis is available under an open-source license and can be obtained at ; additionally, a QIIME 2 plugin is provided to perform this analysis at . « less
; ; ; ; ; ; ;
Award ID(s):
1804187 1804733 1804671
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Understanding the factors that influence microbes’ environmental distributions is important for determining drivers of microbial community composition. These include environmental variables like temperature and pH, and higher-dimensional variables like geographic distance and host species phylogeny. In microbial ecology, “specificity” is often described in the context of symbiotic or host parasitic interactions, but specificity can be more broadly used to describe the extent to which a species occupies a narrower range of an environmental variable than expected by chance. Using a standardization we describe here, Rao’s (Theor Popul Biol, 1982., Sankhya A, 2010. ) Quadratic Entropy can be conveniently applied to calculate specificity of a feature, such as a species, to many different environmental variables.


    We present our R packagespecificityfor performing the above analyses, and apply it to four real-life microbial data sets to demonstrate its application. We found that many fungi within the leaves of native Hawaiian plants had strong specificity to rainfall and elevation, even though these variables showed minimal importance in a previous analysis of fungal beta-diversity. In Antarctic cryoconite holes, our tool revealed that many bacteria have specificity to co-occurring algal community composition. Similarly, in the human gut microbiome, many bacteria showed specificity tomore »the composition of bile acids. Finally, our analysis of the Earth Microbiome Project data set showed that most bacteria show strong ontological specificity to sample type. Our software performed as expected on synthetic data as well.


    specificityis well-suited to analysis of microbiome data, both in synthetic test cases, and across multiple environment types and experimental designs. The analysis and software we present here can reveal patterns in microbial taxa that may not be evident from a community-level perspective. These insights can also be visualized and interactively shared among researchers usingspecificity’s companion package,specificity.shiny.

    « less
  2. Large-scale microbiome studies investigating disease-inducing microbial roles base their findings on differences between microbial count data in contrasting environments (e.g., stool samples between cases and controls). These microbiome survey studies are often impeded by small sample sizes and database bias. Combining data from multiple survey studies often results in obvious batch effects, even when DNA preparation and sequencing methods are identical. Relatedly, predictive models trained on one microbial DNA dataset often do not generalize to outside datasets. In this study, we address these limitations by applying word embedding algorithms (GloVe) and PCA transformation to ASV data from the American Gut Project and generating translation matrices that can be applied to any 16S rRNA V4 region gut microbiome sequencing study. Because these approaches contextualize microbial occurrences in a larger dataset while reducing dimensionality of the feature space, they can improve generalization of predictive models that predict host phenotype from stool associated gut microbiota. The GMEmbeddings R package contains GloVe and PCA embedding transformation matrices at 50, 100 and 250 dimensions, each learned using ∼15,000 samples from the American Gut Project. It currently supports the alignment, matching, and matrix multiplication to allow users to transform their V4 16S rRNA data into thesemore »embedding spaces. We show how to correlate the properties in the new embedding space to KEGG functional pathways for biological interpretation of results. Lastly, we provide benchmarking on six gut microbiome datasets describing three phenotypes to demonstrate the ability of embedding-based microbiome classifiers to generalize to independent datasets. Future iterations of GMEmbeddings will include embedding transformation matrices for other biological systems. Available at: .« less
  3. Greene, Casey S. (Ed.)
    ABSTRACT UniFrac is an important tool in microbiome research that is used for phylogenetically comparing microbiome profiles to one another (beta diversity). Striped UniFrac recently added the ability to split the problem into many independent subproblems, exhibiting nearly linear scaling but suffering from memory contention. Here, we adapt UniFrac to graphics processing units using OpenACC, enabling greater than 1,000× computational improvement, and apply it to 307,237 samples, the largest 16S rRNA V4 uniformly preprocessed microbiome data set analyzed to date. IMPORTANCE UniFrac is an important tool in microbiome research that is used for phylogenetically comparing microbiome profiles to one another. Here, we adapt UniFrac to operate on graphics processing units, enabling a 1,000× computational improvement. To highlight this advance, we perform what may be the largest microbiome analysis to date, applying UniFrac to 307,237 16S rRNA V4 microbiome samples preprocessed with Deblur. These scaling improvements turn UniFrac into a real-time tool for common data sets and unlock new research questions as more microbiome data are collected.
  4. Abstract Background

    Microbiomes are now recognized as the main drivers of ecosystem function ranging from the oceans and soils to humans and bioreactors. However, a grand challenge in microbiome science is to characterize and quantify the chemical currencies of organic matter (i.e., metabolites) that microbes respond to and alter. Critical to this has been the development of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which has drastically increased molecular characterization of complex organic matter samples, but challenges users with hundreds of millions of data points where readily available, user-friendly, and customizable software tools are lacking.


    Here, we build on years of analytical experience with diverse sample types to develop MetaboDirect, an open-source, command-line-based pipeline for the analysis (e.g., chemodiversity analysis, multivariate statistics), visualization (e.g., Van Krevelen diagrams, elemental and molecular class composition plots), and presentation of direct injection high-resolution FT-ICR MS data sets after molecular formula assignment has been performed. When compared to other available FT-ICR MS software, MetaboDirect is superior in that it requires a single line of code to launch a fully automated framework for the generation and visualization of a wide range of plots, with minimal coding experience required. Among the tools evaluated, MetaboDirect is alsomore »uniquely able to automatically generate biochemical transformation networks (ab initio) based on mass differences (mass difference network-based approach) that provide an experimental assessment of metabolite connections within a given sample or a complex metabolic system, thereby providing important information about the nature of the samples and the set of microbial reactions or pathways that gave rise to them. Finally, for more experienced users, MetaboDirect allows users to customize plots, outputs, and analyses.


    Application of MetaboDirect to FT-ICR MS-based metabolomic data sets from a marine phage-bacterial infection experiment and aSphagnumleachate microbiome incubation experiment showcase the exploration capabilities of the pipeline that will enable the research community to evaluate and interpret their data in greater depth and in less time. It will further advance our knowledge of how microbial communities influence and are influenced by the chemical makeup of the surrounding system. The source code and User’s guide of MetaboDirect are freely available through ( and (, respectively.

    « less
  5. Globally, biodiversity has declined at an unprecedented rate, challenging the viability of ecosystems, species, and ecological functions and their corresponding services. Payments for ecosystem services (PES) programs have been established and implemented worldwide to combat the degradation or loss of essential ecosystems and ecosystem services with-out sacrificing the well-being of people. With an overarching goal of reducing soil ero-sion, China’s Grain-to-Green program (GTGP) converts cropland to forest or grassland. As one of the largest PES programs in the world, GTGP has great potential to offer biodi-versity conservation co-benefits. To consider how GTGP may influence biodiversity, we measured forest structure and plant and wildlife species diversity at both GTGP forest and natural forest sites in Fangjingshan National Nature Reserve, China. We also evaluated the relationship between canopy cover and biodiversity measures to test whether forest cover, the most commonly measured and reported ecological metric of PES programs, might act as a good proxy for other biodiversity related parameters. We found that forest cover and species diversity increased after GTGP implementation as understory and overstory plant cover, and understory and midstory plant diversity at GTGP sites were similar to natural forest. Our results suggest that GTGP may also have been associated withmore »increased habitat for protected and vulnerable wildlife species including Elliot’s pheasant (Syrmaticus elli-oti), hog badger (Arctonyx collaris), and wild boar (Sus scrofa). Nevertheless, we identi-fied key differences between GTGP forest and natural forest, particularly variation in forest types and heterogeneity of overstory vegetation. As a result, plant overstory diversity and wildlife species richness at GTGP forest were significantly lower than at natural forest. Our findings suggest, while forest cover may be a good proxy for some metrics of forest struc-ture, it does not serve as a robust proxy for many biodiversity parameters. These findings highlight the need for and importance of robust and representative indicators or proxy vari-ables for measuring ecological effects of PES programs on compositional and structural diversity. We demonstrate that PES may lead to biodiversity co-benefits, but changes in program implementation could improve the return on investment of PES programs to sup-port conservation of biodiversity.« less