skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classification of Blind Users’ Image Exploratory Behaviors Using Spiking Neural Networks
Individuals who are blind adopt multiple procedures to tactually explore images. Automatically recognizing and classifying users’ exploration behaviors is the first step towards the development of an intelligent system that could assist users to explore images more efficiently. In this paper, a computational framework was developed to classify different procedures used by blind users during image exploration. Translation-, rotationand scale-invariant features were extracted from the trajectories of users movements. These features were divided as numerical and logical features and were fed into neural networks. More specifically, we trained spiking neural networks (SNNs) to further encode the numerical features as model strings. The proposed framework employed a distance-based classification scheme to determine the final class/label of the exploratory procedures. Dempster-Shafter Theory (DST) was applied to integrate the distances obtained from all the features. Through the experiments of different dynamics of spiking neurons, the proposed framework achieved a good performance with 95.89% classification accuracy. It is extremely effective in encoding and classifying spatio-temporal data, as compared to Dynamic Time Warping and Hidden Markov Model with 61.30% and 28.70% accuracy. The proposed framework serves as the fundamental block for the development of intelligent interfaces, enhancing the image exploration experience for the blind.  more » « less
Award ID(s):
1919214
PAR ID:
10142761
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Neural Systems and Rehabilitation Engineering
Volume:
NA
Issue:
NA
ISSN:
1534-4320
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zelinski, Michael E.; Taha, Tarek M.; Howe, Jonathan (Ed.)
    Image classification forms an important class of problems in machine learning and is widely used in many realworld applications, such as medicine, ecology, astronomy, and defense. Convolutional neural networks (CNNs) are machine learning techniques designed for inputs with grid structures, e.g., images, whose features are spatially correlated. As such, CNNs have been demonstrated to be highly effective approaches for many image classification problems and have consistently outperformed other approaches in many image classification and object detection competitions. A particular challenge involved in using machine learning for classifying images is measurement data loss in the form of missing pixels, which occurs in settings where scene occlusions are present or where the photodetectors in the imaging system are partially damaged. In such cases, the performance of CNN models tends to deteriorate or becomes unreliable even when the perturbations to the input image are small. In this work, we investigate techniques for improving the performance of CNN models for image classification with missing data. In particular, we explore training on a variety of data alterations that mimic data loss for producing more robust classifiers. By optimizing the categorical cross-entropy loss function, we demonstrate through numerical experiments on the MNIST dataset that training with these synthetic alterations can enhance the classification accuracy of our CNN models. 
    more » « less
  2. IEEE (Ed.)
    Resistive random access Memory (RRAM) based spiking neural networks (SNN) are becoming increasingly attractive for pervasive energy-efficient classification tasks. However, such networks suffer from degradation of performance (as determined by classification accuracy) due to the effects of process variations on fabricated RRAM devices resulting in loss of manufacturing yield. To address such yield loss, a two-step approach is developed. First, an alternative test framework is used to predict the performance of fabricated RRAM based SNNs using the SNN response to a small subset of images from the test image dataset, called the SNN response signature (to minimize test cost). This diagnoses those SNNs that need to be performance-tuned for yield recovery. Next, SNN tuning is performed by modulating the spiking thresholds of the SNN neurons on a layer-by-layer basis using a trained regressor that maps the SNN response signature to the optimal spiking thresholdvalues during tuning. The optimal spiking threshold values are determined by an off-line optimization algorithm. Experiments show that the proposed framework can reduce the number of out-of-spec SNN devices by up to 54% and improve yield by as much as 8.6%. 
    more » « less
  3. Machine learning image recognition and classification of particles and materials is a rapidly expanding field. However, nanomaterial identification and classification are dependent on the image resolution, the image field of view, and the processing time. Optical microscopes are one of the most widely utilized technologies in laboratories across the world, due to their nondestructive abilities to identify and classify critical micro-sized objects and processes, but identifying and classifying critical nano-sized objects and processes with a conventional microscope are outside of its capabilities, due to the diffraction limit of the optics and small field of view. To overcome these challenges of nanomaterial identification and classification, we developed an intelligent nanoscope that combines machine learning and microsphere array-based imaging to: (1) surpass the diffraction limit of the microscope objective with microsphere imaging to provide high-resolution images; (2) provide large field-of-view imaging without the sacrifice of resolution by utilizing a microsphere array; and (3) rapidly classify nanomaterials using a deep convolution neural network. The intelligent nanoscope delivers more than 46 magnified images from a single image frame so that we collected more than 1000 images within 2 seconds. Moreover, the intelligent nanoscope achieves a 95% nanomaterial classification accuracy using 1000 images of training sets, which is 45% more accurate than without the microsphere array. The intelligent nanoscope also achieves a 92% bacteria classification accuracy using 50 000 images of training sets, which is 35% more accurate than without the microsphere array. This platform accomplished rapid, accurate detection and classification of nanomaterials with miniscule size differences. The capabilities of this device wield the potential to further detect and classify smaller biological nanomaterial, such as viruses or extracellular vesicles. 
    more » « less
  4. Informative representation of road networks is essential to a wide variety of applications on intelligent transportation systems. In this article, we design a new learning framework, called Representation Learning for Road Networks (RLRN), which explores various intrinsic properties of road networks to learn embeddings of intersections and road segments in road networks. To implement the RLRN framework, we propose a new neural network model, namely Road Network to Vector (RN2Vec), to learn embeddings of intersections and road segments jointly by exploring geo-locality and homogeneity of them, topological structure of the road networks, and moving behaviors of road users. In addition to model design, issues involving data preparation for model training are examined. We evaluate the learned embeddings via extensive experiments on several real-world datasets using different downstream test cases, including node/edge classification and travel time estimation. Experimental results show that the proposed RN2Vec robustly outperforms existing methods, including (i) Feature-based methods : raw features and principal components analysis (PCA); (ii) Network embedding methods : DeepWalk, LINE, and Node2vec; and (iii) Features + Network structure-based methods : network embeddings and PCA, graph convolutional networks, and graph attention networks. RN2Vec significantly outperforms all of them in terms of F1-score in classifying traffic signals (11.96% to 16.86%) and crossings (11.36% to 16.67%) on intersections and in classifying avenue (10.56% to 15.43%) and street (11.54% to 16.07%) on road segments, as well as in terms of Mean Absolute Error in travel time estimation (17.01% to 23.58%). 
    more » « less
  5. Abstract Spiking Neural Networks (SNNs) have emerged as a compelling, energy-efficient alternative to traditional Artificial Neural Networks (ANNs) for static image tasks such as image classification and segmentation. However, in the more complex video classification domain, SNN-based methods fall considerably short of ANN-based benchmarks, due to the challenges in processing dense RGB frames. To bridge this gap, we propose ReSpike, a hybrid framework that synergizes the strengths of ANNs and SNNs to tackle action recognition tasks with high accuracy and low energy cost. By partitioning film clips into RGB image Key Frames, which primarily capture spatial information, and event-like Residual Frames, which emphasize temporal dynamics cues, ReSpike leverages ANN for processing spatial features and SNN for modeling temporal features. In addition, we propose a multi-scale cross-attention mechanism for effective feature fusion. Compared to state-of-the-art SNN baselines, our ReSpike hybrid architecture demonstrates significant performance improvements (e.g., >30% absolute accuracy improvement on both HMDB-51 and UCF-101 datasets). Additionally, ReSpike is the first SNN method capable of scaling to the large-scale benchmark Kinetics-400. Furthermore, ReSpike achieves comparable performance with prior ANN approaches while bringing better accuracy-energy tradeoff. 
    more » « less