Road network is a basic component of intelligent transportation systems (ITS) in smart city. Informative representation of road networks is important as it is essential to a wide variety of ITS applications. In this paper, we propose a neural network representation learning model, namely Intersection of Road Network to Vector (IRN2Vec), to learn embeddings of road intersections that encode rich information in a road network by exploring geo-locality and intrinsic properties of intersections and moving behaviors of road users. In addition to model design, several issues unique to IRN2Vec, including data preparation for model training and various relationships among intersections, are examined. We evaluate the learned embeddings via extensive experiments on three real-world datasets using three downstream test cases, including prediction of traffic signals and crossings on intersections and travel time estimation. Experimental results show that the proposed IRN2Vec outperforms three existing methods, DeepWalk, LINE and Node2vec, in terms of F1-score in predicting traffic signals (22.21% to 23.84%) and crossings (8.65% to 11.65%), and mean absolute error (MAE) in travel time estimation (9.87% to 19.28%).
more »
« less
On Representation Learning for Road Networks
Informative representation of road networks is essential to a wide variety of applications on intelligent transportation systems. In this article, we design a new learning framework, called Representation Learning for Road Networks (RLRN), which explores various intrinsic properties of road networks to learn embeddings of intersections and road segments in road networks. To implement the RLRN framework, we propose a new neural network model, namely Road Network to Vector (RN2Vec), to learn embeddings of intersections and road segments jointly by exploring geo-locality and homogeneity of them, topological structure of the road networks, and moving behaviors of road users. In addition to model design, issues involving data preparation for model training are examined. We evaluate the learned embeddings via extensive experiments on several real-world datasets using different downstream test cases, including node/edge classification and travel time estimation. Experimental results show that the proposed RN2Vec robustly outperforms existing methods, including (i) Feature-based methods : raw features and principal components analysis (PCA); (ii) Network embedding methods : DeepWalk, LINE, and Node2vec; and (iii) Features + Network structure-based methods : network embeddings and PCA, graph convolutional networks, and graph attention networks. RN2Vec significantly outperforms all of them in terms of F1-score in classifying traffic signals (11.96% to 16.86%) and crossings (11.36% to 16.67%) on intersections and in classifying avenue (10.56% to 15.43%) and street (11.54% to 16.07%) on road segments, as well as in terms of Mean Absolute Error in travel time estimation (17.01% to 23.58%).
more »
« less
- Award ID(s):
- 1717084
- PAR ID:
- 10303738
- Date Published:
- Journal Name:
- ACM Transactions on Intelligent Systems and Technology
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2157-6904
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The prevalent issue in urban trajectory data usage, notably in low-sample rate datasets, revolves around the accuracy of travel time estimations, traffic flow predictions, and trajectory similarity measurements. Conventional methods, often relying on simplistic mixes of static road networks and raw GPS data, fail to adequately integrate both network and trajectory dimensions. Addressing this, the innovative GRFTrajRec framework offers a graph-based solution for trajectory recovery. Its key feature is a trajectory-aware graph representation, enhancing the understanding of trajectory-road network interactions and facilitating the extraction of detailed embedding features for road segments. Additionally, GRFTrajRec's trajectory representation acutely captures spatiotemporal attributes of trajectory points. Central to this framework is a novel spatiotemporal interval-informed seq2seq model, integrating an attention-enhanced transformer and a feature differences-aware decoder. This model specifically excels in handling spatiotemporal intervals, crucial for restoring missing GPS points in low-sample datasets. Validated through extensive experiments on two large real-life trajectory datasets, GRFTrajRec has proven its efficacy in significantly boosting prediction accuracy and spatial consistency.more » « less
-
Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph data due to their ability to learn a concise representation of the data by integrating the node attributes and link information in a principled fashion. However, despite their promise, there are several practical challenges that must be overcome to effectively use them for node classification problems. In particular, current approaches are vulnerable to different kinds of biases inherent in the graph data. First, if the class distribution is imbalanced, then the GNNs' loss function is biased towards classifying the majority class correctly rather than the minority class, which hurts the performance of the latter class. Second, due to homophily effect, the learned representation and subsequent downstream tasks may favor certain demographic groups over others when applied to social network data. To mitigate such biases, we propose a novel framework called Fairness-Aware Cost Sensitive Graph Convolutional Network (FACS-GCN) for classifying nodes in networks with skewed class distributions. Our approach combines a cost-sensitive exponential loss with an adversarial learning component to alleviate the ill-effects of both biases. The framework employs a stagewise additive modeling approach to ensure there is no significant loss in accuracy when imparting fairness into the GNN. Experimental results on 6 benchmark graph data demonstrate the effectiveness of FACS-GCN against comparable baseline methods in terms of promoting fairness while maintaining a high model accuracy on the majority of the datasets.more » « less
-
null (Ed.)In this paper, we propose a supervised graph representation learning method to model the relationship between brain functional connectivity (FC) and structural connectivity (SC) through a graph encoder-decoder system. The graph convolutional network (GCN) model is leveraged in the encoder to learn lower-dimensional node representations (i.e. node embeddings) integrating information from both node attributes and network topology. In doing so, the encoder manages to capture both direct and indirect interactions between brain regions in the node embeddings which later help reconstruct empirical FC networks. From node embeddings, graph representations are learnt to embed the entire graphs into a vector space. Our end-to-end model utilizes a multi-objective loss function to simultaneously learn node representations for FC network reconstruction and graph representations for subject classification. The experiment on a large population of non-drinkers and heavy drinkers shows that our model can provide a characterization of the population pattern in the SC-FC relationship, while also learning features that capture individual uniqueness for subject classification. The identified key brain subnetworks show significant between-group difference and support the promising prospect of GCN-based graph representation learning on brain networks to model human brain activity and function.more » « less
-
Given an urban development plan and the historical traffic observations over the road network, the Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status prior to the deployment of the plan. This problem is of great importance to urban development and transportation management, yet is very challenging because the plan would change the local travel demands drastically and the new travel demand pattern might be unprecedented in the historical data. To tackle these challenges, we propose a novel Conditional Urban Traffic Generative Adversarial Network (Curb-GAN), which provides traffic estimations in consecutive time slots based on different (unprecedented) travel demands, thus enables urban planners to accurately evaluate urban plans before deploying them. The proposed Curb-GAN adopts and advances the conditional GAN structure through a few novel ideas: (1) dealing with various travel demands as the "conditions" and generating corresponding traffic estimations, (2) integrating dynamic convolutional layers to capture the local spatial auto-correlations along the underlying road networks, (3) employing self-attention mechanism to capture the temporal dependencies of the traffic across different time slots. Extensive experiments on two real-world spatio-temporal datasets demonstrate that our Curb-GAN outperforms major baseline methods in estimation accuracy under various conditions and can produce more meaningful estimations.more » « less