We apply artificial noise to the fingerprint embedding authentication framework to improve information-theoretic authentication for the MISO channel. Instead of optimizing for secrecy capacity, we examine the trade-off between message rate, authentication, and key security. In this case, key security aims to limit an adversary’s ability to obtain the key using a maximum likelihood decoder.
more »
« less
Inner Bound for the Capacity Region of Noisy Channels with an Authentication Requirement
The rate regions of many variations of the standard and wire-tap channels have been thoroughly explored. Secrecy capacity characterizes the loss of rate required to ensure that the adversary gains no information about the transmissions. Authentication does not have a standard metric, despite being an important counterpart to secrecy. While some results have taken an information-theoretic approach to the problem of authentication coding, the full rate region and accompanying trade-offs have yet to be characterized. In this paper, we provide an inner bound of achievable rates with an average authentication and reliability constraint. The bound is established by combining and analyzing two existing authentication schemes for both noisy and noiseless channels. We find that our coding scheme improves upon existing schemes.
more »
« less
- PAR ID:
- 10142773
- Date Published:
- Journal Name:
- IEEE International Symposium on Information Theory
- Page Range / eLocation ID:
- 126 to 130
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We apply artificial noise to the fingerprint embedding authentication framework to improve information-theoretic authentication for the MISO channel. Instead of optimizing for secrecy capacity, we examine the trade-off between message rate, authentication, and key security. In this case, key security aims to limit an adversary’s ability to obtain the key using a maximum likelihood decoder.more » « less
-
Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model.more » « less
-
null (Ed.)In 2018, Renes [IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 577-592 (2018)] developed a general theory of channel duality for classical-input quantum-output channels. His result shows that a number of well-known duality results for linear codes on the binary erasure channel can be extended to general classical channels at the expense of using dual problems which are intrinsically quantum mechanical. One special case of this duality is a connection between coding for error correction on the quantum pure-state channel (PSC) and coding for wiretap secrecy on the classical binary symmetric channel (BSC). Similarly, coding for error correction on the BSC is related to wire-tap secrecy on the PSC. While this result has important implications for classical coding, the machinery behind the general duality result is rather challenging for researchers without a strong background in quantum information theory. In this work, we leverage prior results for linear codes on PSCs to give an alternate derivation of the aforementioned special case by computing closed-form expressions for the performance metrics. The noted prior results include the optimality of square-root measurement for linear codes on the PSC and the Fourier duality of linear codes.more » « less
-
We consider a distributed function computation problem in which parties observing noisy versions of a remote source facilitate the computation of a function of their observations at a fusion center through public communication. The distributed function computation is subject to constraints, including not only reliability and storage but also privacy and secrecy. Specifically, 1) the remote source should remain private from an eavesdropper and the fusion center, measured in terms of the information leaked about the remote source; 2) the function computed should remain secret from the eavesdropper, measured in terms of the information leaked about the arguments of the function, to ensure secrecy regardless of the exact function used. We derive the exact rate regions for lossless and lossy single-function computation and illustrate the lossy single-function computation rate region for an information bottleneck example, in which the optimal auxiliary random variables are characterized for binary input symmetric output channels. We extend the approach to lossless and lossy asynchronous multiple-function computations with joint secrecy and privacy constraints, in which case inner and outer bounds for the rate regions differing only in the Markov chain conditions imposed are characterized.more » « less
An official website of the United States government

