skip to main content


Title: Disaster Management and Information Transmission Decision-Making in Public Safety Systems
This paper introduces a Multi-Agency DisAster Management (MADAM) framework for Unmanned Aerial Vehicle (UAV)-assisted public safety systems, based on the principles of game theory and reinforcement learning. Initially, the information quality and criticality (IQC) provided by each agency to an UAV-assisted public safety network is introduced and quantified, and the concept of Value of Information (VoI) that measures each agency’s positive contribution to the overall disaster management process is defined. Based on these, a holistic cost function is adopted by each agency, reflecting its relative abstention from the information provisioning process. Each agency aims at minimizing its personal cost function in order to better contribute to the disaster management. This optimization problem is formulated as a non-cooperative game among the agencies and it is proven to be an exact potential game, thus guaranteeing the existence of at least one Pure Nash Equilibrium (PNE). We propose a binary log-linear reinforcement learning algorithm that converges to the optimal PNE. The performance of the proposed approach is evaluated through modeling and simulation under several scenarios, and its superiority compared to other approaches is demonstrated.  more » « less
Award ID(s):
1849739
NSF-PAR ID:
10143263
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Global Communications Conference (GLOBECOM)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Modern Public Safety Networks (PSNs) are assisted by Unmanned Aerial Vehicles (UAVs) to provide a resilient communication paradigm during catastrophic events. In this context, we propose a distributed user-centric risk-aware resource management framework in UAV-assisted PSNs supported by both a static UAV and a mobile UAV. The mobile UAV is entitled to a larger portion of the available spectrum due to its capability and flexibility to re-position itself, and therefore establish better communication channel conditions to the users, compared to the static UAV. However, the potential over-exploitation of the mobile UAV-based communication by the users may lead to the mobile UAV’s failure to serve the users due to the increased levels of interference, consequently introducing risk in the user decisions. To capture this uncertainty, we follow the principles of Prospect Theory and design a user’s prospect-theoretic utility function that reflects user’s risk-aware behavior regarding its transmission power investment to the static and/or mobile UAV-based communication option. A non-cooperative game among the users is formulated, where each user determines its power investment strategy to the two available communication choices in order to maximize its expected prospect-theoretic utility. The existence and uniqueness of a Pure Nash Equilibrium (PNE) is proven and the convergence of the users’ strategies to it is shown. An iterative distributed and low-complexity algorithm is introduced to determine the PNE. The performance of the proposed user-centric risk-aware resource management framework in terms of users’ achievable data rate and spectrum utilization, is achieved via modeling and simulation. Furthermore, its superiority and benefits are demonstrated, by comparing its performance against other existing approaches with regards to UAV selection and spectrum utilization. 
    more » « less
  2. null (Ed.)
    Unmanned Aerial Vehicle (UAV)-assisted Multi-access Edge Computing (MEC) systems have emerged recently as a flexible and dynamic computing environment, providing task offloading service to the users. In order for such a paradigm to be viable, the operator of a UAV-mounted MEC server should enjoy some form of profit by offering its computing capabilities to the end users. To deal with this issue in this paper, we apply a usage-based pricing policy for allowing the exploitation of the servers’ computing resources. The proposed pricing mechanism implicitly introduces a more social behavior to the users with respect to competing for the UAV-mounted MEC servers’ computation resources. In order to properly model the users’ risk-aware behavior within the overall data offloading decision-making process the principles of Prospect Theory are adopted, while the exploitation of the available computation resources is considered based on the theory of the Tragedy of the Commons. Initially, the user’s prospect-theoretic utility function is formulated by quantifying the user’s risk seeking and loss aversion behavior, while taking into account the pricing mechanism. Accordingly, the users’ pricing and risk-aware data offloading problem is formulated as a distributed maximization problem of each user’s expected prospect-theoretic utility function and addressed as a non-cooperative game among the users. The existence of a Pure Nash Equilibrium (PNE) for the formulated non-cooperative game is shown based on the theory of submodular games. An iterative and distributed algorithm is introduced which converges to the PNE, following the learning rule of the best response dynamics. The performance evaluation of the proposed approach is achieved via modeling and simulation, and detailed numerical results are presented highlighting its key operation features and benefits. 
    more » « less
  3. null (Ed.)
    In this paper, an Unmanned Aerial Vehicles (UAVs) - enabled human Internet of Things (IoT) architecture is introduced to enable the rescue operations in public safety systems (PSSs). Initially, the first responders select in an autonomous manner the disaster area that they will support by considering the dynamic socio-physical changes of the surrounding environment and following a set of gradient ascent reinforcement learning algorithms. Then, the victims create coalitions among each other and the first responders at each disaster area based on the expected- maximization approach. Finally, the first responders select the UAVs that communicate with the Emergency Control Center (ECC), to which they will report the collected data from the disaster areas by adopting a set of log-linear reinforcement learning algorithms. The overall distributed UAV-enabled human Internet of Things architecture is evaluated via detailed numerical results that highlight its key operational features and the performance benefits of the proposed framework. 
    more » « less
  4. null (Ed.)
    Artificial Intelligence (AI) based techniques are typically used to model decision making in terms of strategies and mechanisms that can result in optimal payoffs for a number of interacting entities, often presenting antagonistic behaviors. In this paper, we propose an AI-enabled multi-access edge computing (MEC) framework, supported by computing-equipped Unmanned Aerial Vehicles (UAVs) to facilitate IoT applications. Initially, the problem of determining the IoT nodes optimal data offloading strategies to the UAV-mounted MEC servers, while accounting for the IoT nodes' communication and computation overhead, is formulated based on a game-theoretic model. The existence of at least one Pure Nash Equilibrium (PNE) point is shown by proving that the game is submodular. Furthermore, different operation points (i.e. offloading strategies) are obtained and studied, based either on the outcome of Best Response Dynamics (BRD) algorithm, or via alternative reinforcement learning approaches (i.e. gradient ascent, log-linear, and Q-learning algorithms), which explore and learn the environment towards determining the users' stable data offloading strategies. The corresponding outcomes and inherent features of these approaches are critically compared against each other, via modeling and simulation. 
    more » « less
  5. null (Ed.)
    Recent technological advances in the use of Unmanned Aerial Vehicles (UAVs) and Wireless Powered Communications (WPC) have enabled the energy efficient operation of the Public Safety Networks (PSN) during disaster scenarios. In this paper, an energy efficient information flow and energy harvesting framework capturing users' risk-aware characteristics is introduced based on the principles of Contract Theory. To better support the operational effectiveness of the proposed framework, users are clustered in rescue groups following a socio-physical-aware group formation mechanism, while rescue leaders for each group are selected. A reinforcement learning approach is applied to enable the optimal matching between the UAVs and the rescue leaders in a distributed and efficient manner. The proposed contract-theoretic framework models the UAVs-victims relation based on a labor market setting via offering rewards to the users (incentives) in order to compensate them for their invested labor (reporting information). Detailed numerical results demonstrate the benefits and superiority of the proposed framework under different settings. 
    more » « less