skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecularly Imprinted Polyacrylamide with Fluorescent Nanodiamond for Creatinine Detection
Creatinine measurement in blood and urine is an important diagnostic test for assessing kidney health. In this study, a molecularly imprinted polymer was obtained by incorporating fluorescent nanodiamond into a creatinine-imprinted polyacrylamide hydrogel. The quenching of peak nanodiamond fluorescence was significantly higher in the creatinine-imprinted polymer compared to the non-imprinted polymer, indicative of higher creatinine affinity in the imprinted polymer. Fourier transform infrared spectroscopy and microscopic imaging was used to investigate the nature of chemical bonding and distribution of nanodiamonds inside the hydrogel network. Nanodiamonds bind strongly to the hydrogel network, but as aggregates with average particle diameter of 3.4 ± 1.8 µm and 3.1 ± 1.9 µm for the non-imprinted and molecularly imprinted polymer, respectively. Nanodiamond fluorescence from nitrogen-vacancy color centers (NV− and NV0) was also used to detect creatinine based on nanodiamond-creatinine surface charge interaction. Results show a 15% decrease of NV−/NV0 emission ratio for the creatinine-imprinted polymer compared to the non-imprinted polymer, and are explained in terms of changes in the near-surface band structure of diamond with addition of creatinine. With further improvement of sensor design to better disperse nanodiamond within the hydrogel, fluorescent sensing from nitrogen-vacancy centers is expected to yield higher sensitivity with a longer range (Coulombic) interaction to imprinted sites than that for a sensor based on acceptor/donor resonance energy transfer.  more » « less
Award ID(s):
1655280
PAR ID:
10143436
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials
Volume:
12
Issue:
13
ISSN:
1996-1944
Page Range / eLocation ID:
2097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800–900 °C for 1–2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 μm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 μm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 μm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals. 
    more » « less
  2. The use of fluorescence microscopy to study fate and transport of nanoparticles in the environment can be limited by the presence of confounding background signals such as autofluorescence and scattered light. The unique spin-related luminescence properties of nitrogen vacancy (NV) centers in diamond nanoparticles (NVND) enable new types of imaging modalities such as selective imaging of nanoparticles in the presence of background fluorescence. These techniques make use of the fact that the spin properties, which affect the fluorescence of NV centers, can be modulated using applied magnetic or radio-frequency fields. This work presents the use magnetic fields to modulate the fluorescence of NVND for background-subtracted imaging of nanoparticles ingested by a model organism, C. elegans . With the addition of modest time-modulated magnetic fields from an inexpensive “hobby” electromagnet, the fluorescence of 40 nm NVND can be modulated by 10% in a widefield imaging configuration. Herein, differential magnetic imaging is used to image and to isolate the fluorescence arising from nanodiamond within the gut of the organism C. elegans . This method represents a promising approach to probing the uptake of nanoparticles by organisms and to assessing the movement and interactions of nanoparticles in biological systems. 
    more » « less
  3. There is an increasing interest in the sensing of magnetic, electric, and temperature effects in biological systems on the nanoscale. While there are existing classical sensors, the possibility of using quantum systems promises improved sensitivity and faster acquisition time. So far, much progress has been made in diamond color centers like the nitrogen-vacancy (NV) which not only satisfy key requirements for biosensing, like extraordinary photostability and non-toxicity, but they also show promise as room-temperature quantum computers/sensors. Unfortunately, the most-impressive demonstrations have been done in bulk diamond, since NVs in fluorescent nanodiamonds (FNDs) tend to have inferior properties. Yet FNDs are required for widespread nanoscale biosensing. In order for FND-based quantum sensors to approach the performance of bulk diamond, novel approaches are needed for their fabrication. To address this need we discuss opportunities for engineering the growth of FNDs. 
    more » « less
  4. Abstract Nitrogen-vacancy (NV) and silicon-vacancy (SiV) color defects in diamond are promising systems for applications in quantum technology. The NV and SiV centers have multiple charge states, and their charge states have different electronic, optical and spin properties. For the NV centers, most investigations for quantum sensing applications are targeted on the negatively charged NV (NV), and it is important for the NV centers to be in the NVstate. However, it is known that the NV centers are converted to the neutrally charged state (NV0) under laser excitation. An energetically favorable charge state for the NV and SiV centers depends on their local environments. It is essential to understand and control the charge state dynamics for their quantum applications. In this work, we discuss the charge state dynamics of NV and SiV centers under high-voltage nanosecond pulse discharges. The NV and SiV centers coexist in the diamond crystal. The high-voltage pulses enable manipulating the charge states efficiently. These voltage-induced changes in charge states are probed by their photoluminescence spectral analysis. The analysis result from the present experiment shows that the high-voltage nanosecond pulses cause shifts of the chemical potential and can convert the charge states of NV and SiV centers with the transition rates of ∼MHz. This result also indicates that the major population of the SiV centers in the sample is the doubly negatively charged state (SiV2−), which is often overlooked because of its non-fluorescent and non-magnetic nature. This demonstration paves a path for a method of rapid manipulation of the NV and SiV charge states in the future. 
    more » « less
  5. We demonstrate the operation of a rotation sensor based on the nitrogen-14 ( 14 N) nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor uses optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors 14 N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the 14 N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7°/ s (13 mHz/ Hz ), with a bias stability of 0.4 °/s (1.1 mHz). 
    more » « less