Abstract Submesoscale currents and internal gravity waves achieve an intense turbulent cascade near the ocean surface [depth of 0–O(100) m], which is thought to give rise to significant energy sources and sinks for mesoscale eddies. Here, we characterize the contributions of nonwave currents (NWCs; including eddies and fronts) and internal gravity waves (IGWs; including near-inertial motions, lee waves, and the internal wave continuum) to near-surface submesoscale turbulence in the Drake Passage. Using a numerical simulation, we combine Lagrangian filtering and a Helmholtz decomposition to identify NWCs and IGWs and to characterize their dynamics (rotational versus divergent). We show that NWCs and IGWs contribute in different proportions to the inverse and forward turbulent kinetic energy cascades, based on their dynamics and spatiotemporal scales. Purely rotational NWCs cause most of the inverse cascade, while coupled rotational–divergent components of NWCs and coupled NWC–IGWs cause the forward cascade. The cascade changes direction at a spatial scale at which motions become increasingly divergent. However, the forward cascade is ultimately limited by the motions’ spatiotemporal scales. The bulk of the forward cascade (80%–95%) is caused by NWCs and IGWs of small spatiotemporal scales (L< 10 km;T< 6 h), which are primarily rotational: submesoscale eddies, fronts, and the internal wave continuum. These motions also cause a significant part of the inverse cascade (30%). Our results highlight the requirement for high spatiotemporal resolutions to diagnose the properties and large-scale impacts of near-surface submesoscale turbulence accurately, with significant implications for ocean energy cycle study strategies.
more »
« less
Time Scales of Submesoscale Flow Inferred from a Mooring Array
While the distribution of kinetic energy across spatial scales in the submesoscale range (1–100 km) has been estimated from observations, the associated time scales are largely unconstrained. These time scales can provide important insight into the dynamics of submesoscale turbulence because they help quantify to what degree the flow is subinertial and thus constrained by Earth’s rotation. Here a mooring array is used to estimate these time scales in the northeast Atlantic. Frequency-resolved structure functions indicate that energetic wintertime submesoscale turbulence at spatial scales around 10 km evolves on time scales of about 1 day. While these time scales are comparable to the inertial period, the observed flow also displays characteristics of subinertial flow that is geostrophically balanced to leading order. An approximate Helmholtz decomposition shows the order 10-km flow to be dominated by its rotational component, and the root-mean-square Rossby number at these scales is estimated to be 0.3. This rotational dominance and Rossby numbers below one persist down to 2.6 km, the smallest spatial scale accessible by the mooring array, despite substantially superinertial Eulerian evolution. This indicates that the Lagrangian evolution of submesoscale turbulence is slower than the Eulerian time scale estimated from the moorings. The observations therefore suggest that, on average, submesoscale turbulence largely follows subinertial dynamics in the 1–100-km range, even if Doppler shifting produces superinertial Eulerian evolution. Ageostrophic motions become increasingly important for the evolution of submesoscale turbulence as the scale is reduced—the root-mean-square Rossby number reaches 0.5 at a spatial scale of 2.6 km.
more »
« less
- Award ID(s):
- 1851376
- PAR ID:
- 10143598
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- Volume:
- 50
- Issue:
- 4
- ISSN:
- 0022-3670
- Page Range / eLocation ID:
- p. 1065-1086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Surface gravity wave effects on currents (WEC) cause the emergence of Langmuir cells (LCs) in a suite of high horizontal resolution (Δx= 30 m), realistic oceanic simulations in the open ocean of central California. During large wave events, LCs develop widely but inhomogeneously, with larger vertical velocities in a deeper mixed layer. They interact with extant submesoscale currents. A 550-m horizontal spatial filter separates the signals of LCs and of submesoscale and larger-scale currents. The LCs have a strong velocity variance with small density gradient variance, while submesoscale currents are large in both. Using coarse graining, we show that WEC induces a forward cascade of kinetic energy in the upper ocean up to at least a 5-km scale. This is due to strong positive vertical Reynolds stress (in both the Eulerian and the Stokes drift energy production terms) at all resolved scales in the WEC solutions, associated with large vertical velocities. The spatial filter elucidates the role of LCs in generating the shear production on the vertical scale of Stokes drift (10 m), while submesoscale currents affect both the horizontal and vertical energy fluxes throughout the mixed layer (50–80 m). There is a slightly weaker forward cascade associated with nonhydrostatic LCs (by 13% in average) than in the hydrostatic case, but overall the simulation differences are small. A vertical mixing schemeK-profile parameterization (KPP) partially augmented by Langmuir turbulence yields wider LCs, which can lead to lower surface velocity gradients compared to solutions using the standard KPP scheme.more » « less
-
The mean state of the atmosphere and ocean is set through a balance between external forcing (radiation, winds, heat and freshwater fluxes) and the emergent turbulence, which transfers energy to dissipative structures. The forcing gives rise to jets in the atmosphere and currents in the ocean, which spontaneously develop turbulent eddies through the baroclinic instability. A critical step in the development of a theory of climate is to properly include the eddy-induced turbulent transport of properties like heat, moisture, and carbon. In the linear stages, baroclinic instability generates flow structures at the Rossby deformation radius, a length scale of order 1,000 km in the atmosphere and 100 km in the ocean, smaller than the planetary scale and the typical extent of ocean basins, respectively. There is, therefore, a separation of scales between the large-scale gradient of properties like temperature and the smaller eddies that advect it randomly, inducing effective diffusion. Numerical solutions show that such scale separation remains in the strongly nonlinear turbulent regime, provided there is sufficient drag at the bottom of the atmosphere and ocean. We compute the scaling laws governing the eddy-driven transport associated with baroclinic turbulence. First, we provide a theoretical underpinning for empirical scaling laws reported in previous studies, for different formulations of the bottom drag law. Second, these scaling laws are shown to provide an important first step toward an accurate local closure to predict the impact of baroclinic turbulence in setting the large-scale temperature profiles in the atmosphere and ocean.more » « less
-
We use a novel experimental setup to obtain the vertical velocity and acceleration statistics of snowflakes settling in atmospheric surface-layer turbulence, for Taylor microscale Reynolds numbers (Reλ) between 400 and 67 000, Stokes numbers (St) between 0.12 and 3.50, and a broad range of snowflake habits. Despite the complexity of snowflake structures and the non-uniform nature of the turbulence, we find that mean snowflake acceleration distributions can be uniquely determined from the value of St. Ensemble-averaged snowflake root mean square (rms) accelerations scale nearly linearly with St. Normalized by the rms value, the acceleration distribution is nearly exponential, with a scaling factor for the (exponent) of −3/2 that is independent of Reλ and St; kurtosis scales with Reλ, albeit weakly compared to fluid tracers in turbulence; gravitational drift with sweeping is observed for St < 1. Surprisingly, the same exponential distribution describes a pseudo-acceleration calculated from fluctuations of snowflake terminal fall speed in still air. This equivalence suggests an underlying connection between how turbulence determines the trajectories of particles and the microphysics determining the evolution of their shapes and sizes.more » « less
-
Abstract Rip currents are generated by surfzone wave breaking and are ejected offshore inducing inner-shelf flow spatial variability (eddies). However, surfzone effects on the inner-shelf flow spatial variability have not been studied in realistic models that include both shelf and surfzone processes. Here, these effects are diagnosed with two nearly identical twin realistic simulations of the San Diego Bight over summer to fall where one simulation includes surface gravity waves (WW) and the other that does not (NW). The simulations include tides, weak to moderate winds, internal waves, submesoscale processes, and have surfzone width L sz of 96(±41) m (≈ 1 m significant wave height). Flow spatial variability metrics, alongshore root mean square vorticity, divergence, and eddy cross-shore velocity, are analyzed in a L sz normalized cross-shore coordinate. At the surface, the metrics are consistently (> 70%) elevated in the WW run relative to NW out to 5 L sz offshore. At 4 L sz offshore, WW metrics are enhanced over the entire water column. In a fixed coordinate appropriate for eddy transport, the eddy cross-shore velocity squared correlation betweenWWand NW runs is < 0.5 out to 1.2 km offshore or 12 time-averaged L sz . The results indicate that the eddy tracer ( e.g. , larvae) transport and dispersion across the inner-shelf will be significantly different in the WW and NW runs. The WW model neglects specific surfzone vorticity generation mechanisms. Thus, these inner-shelf impacts are likely underestimated. In other regions with larger waves, impacts will extend farther offshore.more » « less
An official website of the United States government
