skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Explicit Agent-Level Optimal Cooperative Controllers for Dynamically Decoupled Systems with Output Feedback
We consider a dynamically decoupled network of agents each with a local output-feedback controller. We assume each agent is a node in a directed acyclic graph and the controllers share information along the edges in order to cooperatively optimize a global objective. We develop explicit state-space formulations for the jointly optimal networked controllers that highlight the role of the graph structure. Specifically, we provide generically minimal agent-level implementations of the local controllers along with intuitive interpretations of their states and the information that should be transmitted between controllers.  more » « less
Award ID(s):
1710892
PAR ID:
10143975
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Conference on Decision and Control
Page Range / eLocation ID:
8254 to 8259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the optimal multi-agent persistent monitoring problem defined by a team of cooperating agents visiting a set of nodes (targets) on a graph with the objective of minimizing a measure of overall node state uncertainty. The solution to this problem involves agent trajectories defined both by the sequence of nodes to be visited by each agent and the amount of time spent at each node. We propose a class of distributed threshold-based parametric controllers through which agent transitions from one node to the next are controlled by thresholds on the node uncertainty. The resulting behavior of the agent-target system is described by a hybrid dynamic system. This enables the use of Infinitesimal Perturbation Analysis (IPA) to determine on-line optimal threshold parameters through gradient descent and thus obtain optimal controllers within this family of threshold-based policies. Simulations are included to illustrate our results and compare them to optimal solutions derived through dynamic programming. 
    more » « less
  2. This paper studies the distributed feedback optimization problem for linear multi-agent systems without precise knowledge of local costs and agent dynamics. The proposed solution is based on a hierarchical approach that uses upper-level coordinators to adjust reference signals toward the global optimum and lower-level controllers to regulate agents’ outputs toward the reference signals. In the absence of precise information on local gradients and agent dynamics, an extremum-seeking mechanism is used to enforce a gradient descent optimization strategy, and an adaptive dynamic programming approach is taken to synthesize an internal-model-based optimal tracking controller. The whole procedure relies only on measurements of local costs and input-state data along agents’ trajectories. Moreover, under appropriate conditions, the closed-loop signals are bounded and the output of the agents exponentially converges to a small neighborhood of the desired extremum. A numerical example is conducted to validate the efficacy of the proposed method. 
    more » « less
  3. This paper studies distributed Q-learning for Linear Quadratic Regulator (LQR) in a multi-agent network. The existing results often assume that agents can observe the global system state, which may be infeasible in large-scale systems due to privacy concerns or communication constraints. In this work, we consider a setting with unknown system models and no centralized coordinator. We devise a state tracking (ST) based Q-learning algorithm to design optimal controllers for agents. Specifically, we assume that agents maintain local estimates of the global state based on their local information and communications with neighbors. At each step, every agent updates its local global state estimation, based on which it solves an approximate Q-factor locally through policy iteration. Assuming a decaying injected excitation noise during the policy evaluation, we prove that the local estimation converges to the true global state, and establish the convergence of the proposed distributed ST-based Q-learning algorithm. The experimental studies corroborate our theoretical results by showing that our proposed method achieves comparable performance with the centralized case. 
    more » « less
  4. We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘highquality’ information for optimizing the control performance under communication constraints. We show that there exist a sepatation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program. 
    more » « less
  5. Multi-agent systems (MASs) consisting of a number of autonomous agents that communicate, coordinate, and jointly sense the environment to achieve complex missions can be found in a variety of applications such as robotics, smart cities, and internet-of-things applications. Modeling and monitoring MAS requirements to guarantee overall mission objectives, safety, and reliability is an important problem. Such requirements implicitly require reasoning about diverse sensing and communication modalities between agents, analysis of the dependencies between agent tasks, and the spatial or virtual distance between agents. To capture such rich MAS requirements, we model agent interactions via multiple directed graphs, and introduce a new logic –Spatio-Temporal Logic with Graph Operators(STL-GO). The key innovation in STL-GO are graph operators that enable us to reason about the number of agents along either the incoming or outgoing edges of the underlying interaction graph that satisfy a given property of interest; for example, the requirement that an agent should sense at least two neighboring agents whose task graphs indicate the ability to collaborate. We then propose novel distributed monitoring conditions for individual agents that use only local information to determine whether or not an STL-GO specification is satisfied. We compare the expressivity of STL-GO against existing spatio-temporal logic formalisms, and demonstrate the utility of STL-GO and our distributed monitors in a bike-sharing and a multi-drone case study. 
    more » « less