In networked control systems, the sensory signals are often quantized before being transmitted to the controller. Consequently, performance is affected by the coarseness of this quantization process. Modern communication technologies allow users to obtain resolution-varying quantized measurements based on the prices paid. In this paper, we consider the problem of joint optimal controller synthesis and quantizer scheduling for a partially observed quantized-feedback linear-quadratic-Gaussian system, where the measurements are quantized before being sent to the controller. The system is presented with several choices of quantizers, along with the cost of using each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike an optimal balance between control performance and quantization cost. When the innovation signal is quantized instead of the measurement, the problem is decoupled into two optimization problems: one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal controller is found by solving a Riccati equation and the optimal quantizer-selection policy is found by solving a linear program---both of which can be solved offline. 
                        more » 
                        « less   
                    
                            
                            Communication- and Control-aware Optimal Quantizer Selection for Multi-agent Control
                        
                    
    
            We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘highquality’ information for optimizing the control performance under communication constraints. We show that there exist a sepatation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1849130
- PAR ID:
- 10515365
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE control systems letters
- ISSN:
- 2475-1456
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Vision-based formation control systems are attractive because they can use inexpensive sensors and can work in GPS-denied environments. The safety assurance for such systems is challenging: the vision component’s accuracy depends on the environment in complicated ways, these errors propagate through the system and lead to incorrect control actions, and there exists no formal specification for end-to-end reasoning. We address this problem and propose a technique for safety assurance of vision-based formation control: First, we propose a scheme for constructing quantizers that are consistent with vision-based perception. Next, we show how the convergence analysis of a standard quantized consensus algorithm can be adapted for the constructed quantizers. We use the recently defined notion of perception contracts to create error bounds on the actual vision-based perception pipeline using sampled data from different ground truth states, environments, and weather conditions. Specifically, we use a quantizer in logarithmic polar coordinates, and we show that this quantizer is suitable for the constructed perception contracts for the vision-based position estimation, where the error worsens with respect to the absolute distance between agents. We build our formation control algorithm with this nonuniform quantizer, and we prove its convergence employing an existing result for quantized consensus.more » « less
- 
            We consider the decentralized control of radial distribution systems with controllable photovoltaic inverters and energy storage resources. For such systems, we investigate the problem of designing fully decentralized controllers that minimize the expected cost of balancing demand, while guaranteeing the satisfaction of individual resource and distribution system voltage constraints. Employing a linear approximation of the branch flow model, we formulate this problem as the design of a decentralized disturbance-feedback controller that minimizes the expected value of a convex quadratic cost function, subject to robust convex quadratic constraints on the system state and input. As such problems are, in general, computationally intractable, we derive a tractable inner approximation to this decentralized control problem, which enables the efficient computation of an affine control policy via the solution of a finite-dimensional conic program. As affine policies are, in general, suboptimal for the family of systems considered, we provide an efficient method to bound their suboptimality via the optimal solution of another finite-dimensional conic program. A case study of a 12 kV radial distribution system demonstrates that decentralized affine controllers can perform close to optimal.more » « less
- 
            We consider the decentralized control of radial distribution systems with controllable photovoltaic inverters and storage devices. For such systems, we consider the problem of designing controllers that minimize the expected cost of meeting demand, while respecting distribution system and resource constraints. Employing a linear approximation of the branch flow model, we formulate this problem as the design of a decentralized disturbance-feedback controller that minimizes the expected value of a convex quadratic cost function, subject to convex quadratic constraints on the state and input. As such problems are, in general, computationally intractable, we derive an inner approximation to this decentralized control problem, which enables the efficient computation of an affine control policy via the solution of a conic program. As affine policies are, in general, suboptimal for the systems considered, we provide an efficient method to bound their suboptimality via the solution of another conic program. A case study of a 12 kV radial distribution feeder demonstrates that decentralized affine controllers can perform close to optimal.more » « less
- 
            Abstract This paper presents a hierarchical nonlinear control algorithm for the real-time planning and control of cooperative locomotion of legged robots that collaboratively carry objects. An innovative network of reduced-order models subject to holonomic constraints, referred to as interconnected linear inverted pendulum (LIP) dynamics, is presented to study cooperative locomotion. The higher level of the proposed algorithm employs a supervisory controller, based on event-based model predictive control (MPC), to effectively compute the optimal reduced-order trajectories for the interconnected LIP dynamics. The lower level of the proposed algorithm employs distributed nonlinear controllers to reduce the gap between reduced- and full-order complex models of cooperative locomotion. In particular, the distributed controllers are developed based on quadratic programing (QP) and virtual constraints to impose the full-order dynamical models of each agent to asymptotically track the reduced-order trajectories while having feasible contact forces at the leg ends. The paper numerically investigates the effectiveness of the proposed control algorithm via full-order simulations of a team of collaborative quadrupedal robots, each with a total of 22 degrees-of-freedom. The paper finally investigates the robustness of the proposed control algorithm against uncertainties in the payload mass and changes in the ground height profile. Numerical studies show that the cooperative agents can transport unknown payloads whose masses are up to 57%, 97%, and 137% of a single agent's mass with a team of two, three, and four legged robots.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    