Glaciers are receding in the northern Antarctic Peninsula and exposing previously entombed soils and plants. We used 39 black (dead) mosses collected from rapidly retreating ice margins at four sites along the Antarctic Peninsula to determine the kill dates using radiocarbon measurements and to constrain the timing of past glacier advances over the last 1500 yr. We established strict new criteria for sample collection to promote robust estimates of plant death. We found distinct phases of ice advance during ca. 1300, 800, and 200 calibrated years before 1950 (cal yr B.P.). We report estimates of the rate of glacier advance at ca. 800 cal yr B.P. at Gamage and Bonaparte Points (southern Anvers Island) of 2.0 and 0.3 m/yr, respectively. Although the range of kill dates is relatively narrow within a region, suggesting multiple glaciers advanced simultaneously, the rates of local advances can vary by almost an order of magnitude and are much less than retreat rates. Our kill dates coincide with evidence for glacier advances from other studies in the northern Antarctic Peninsula at ca. 1300, 800, and 200 cal yr B.P. and for penguin colony abandonment at several sites in the region ranging from 450 to 0 cal yr B.P. The combination of our new terrestrial evidence for glacier advances with other lines of evidence shows the regional synchroneity of glacial dynamics and cryosphere-biosphere connections during rapid climate shifts and the sensitivity of terrestrial ecosystems to climate cooling.
more »
« less
Late Holocene ice-mass changes recorded in a relative sea-level record from Joinville Island, Antarctica
Abstract Recent ice-mass loss driven by warming along the Antarctic Peninsula has resulted in rapid changes in uplift rates across the region. Are such events only a function of recent warming? If not, does the Earth response to such events last long enough to be preserved in Holocene records of relative sea level (RSL), and thus have a bearing on global-scale glacial isostatic adjustment (GIA) models (e.g. ICE-6G)? Answering such questions in Antarctica is hindered by the scarcity of RSL reconstructions within the region. Here, a new RSL reconstruction for Antarctica is presented based on beach ridges from Joinville Island on the Antarctic Peninsula. We find that RSL has fallen 4.9 ± 0.58 m over the past 3100 yr, and that the island experienced a significant increase in the rate of RSL fall from 1540 ± 125 cal. (calibrated) yr B.P. to 1320 ± 125 cal. yr B.P. This increase in the rate of RSL fall is likely due to the viscoelastic response of the solid Earth to terrestrial ice-mass loss from the Antarctic Peninsula, similar to the Earth response experienced after ice-mass loss following acceleration of glaciers behind the collapsed Larsen B ice shelf in 2002 C.E. Additionally, slower rates of beach-ridge progradation from 695 ± 190 cal. yr B.P. to 235 ± 175 cal. yr B.P. potentially reflect erosion of beach ridges from a RSL rise induced by a local glacial advance. The rapid response of the Earth to minor ice-mass changes recorded in the RSL record further supports recent assertions of a more responsive Earth to glacial unloading and at time scales relevant for GIA of Holocene and Pleistocene sea levels. Thus, current continental and global GIA models may not accurately capture the ice-mass changes of the Antarctic ice sheets at decadal and centennial time scales.
more »
« less
- Award ID(s):
- 1644197
- PAR ID:
- 10169094
- Date Published:
- Journal Name:
- Geology
- Volume:
- 47
- Issue:
- 11
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 1064 to 1068
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In order to reconstruct past environmental conditions along the north-eastern Antarctic Peninsula, we documented changes in grain size, grain roundness, onlap as seen in ground-penetrating radar reflection profiles and ice-rafted debris on a set of 36 raised beaches developed over the last ~7.7 ± 0.9 ka on Joinville Island. The most pronounced changes in beach character occur at ~2.7–3.0 ka. At this time, there appears to have been a reintroduction of less rounded material, the development of stratification within individual beach ridges, an introduction of seaweed and limpets to the beach deposits, a change in clast provenance (although slightly earlier than the change in cobble roundness) and a shallowing of the overall beach plain slope. Prolonged cooling associated with the Neoglacial period may have contributed to these changes, as the readvance of glaciers could have changed the provenance of the beach deposits and introduced more material, leading to the change in roundness of the beach cobbles and the overall slope of the beach plain. This study suggests that late Holocene environmental change left a measurable impact on the coastal zone of Antarctica.more » « less
-
Abstract The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed by melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ∼800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow cover on the cape since 2013 support this hypothesis. Increased δ13C values of penguin bone collagen further indicate a period of enhanced marine productivity during the penguin “optimum”, a warm period at 4000–2000 cal. yr B.P., perhaps related to an expansion of the Terra Nova Bay polynya with calving events of the Drygalski Ice Tongue.more » « less
-
Abstract Stratigraphic, lithologic, foraminiferal, and radiocarbon analyses indicate that at least four abrupt mud-over-peat contacts are recorded across three sites (Jacoby Creek, McDaniel Creek, and Mad River Slough) in northern Humboldt Bay, California, USA (∼44.8°N, −124.2°W). The stratigraphy records subsidence during past megathrust earthquakes at the southern Cascadia subduction zone ∼40 km north of the Mendocino Triple Junction. Maximum and minimum radiocarbon ages on plant macrofossils from above and below laterally extensive (>6 km) contacts suggest regional synchroneity of subsidence. The shallowest contact has radiocarbon ages that are consistent with the most recent great earthquake at Cascadia, which occurred at 250 cal yr B.P. (1700 CE). Using Bchron and OxCal software, we model ages for the three older contacts of ca. 875 cal yr B.P., ca. 1120 cal yr B.P., and ca. 1620 cal yr B.P. For each of the four earthquakes, we analyze foraminifera across representative mud-over-peat contacts selected from McDaniel Creek. Changes in fossil foraminiferal assemblages across all four contacts reveal sudden relative sea-level (RSL) rise (land subsidence) with submergence lasting from decades to centuries. To estimate subsidence during each earthquake, we reconstructed RSL rise across the contacts using the fossil foraminiferal assemblages in a Bayesian transfer function. The coseismic subsidence estimates are 0.85 ± 0.46 m for the 1700 CE earthquake, 0.42 ± 0.37 m for the ca. 875 cal yr B.P. earthquake, 0.79 ± 0.47 m for the ca. 1120 cal yr B.P. earthquake, and ≥0.93 m for the ca. 1620 cal yr B.P. earthquake. The subsidence estimate for the ca. 1620 cal yr B.P. earthquake is a minimum because the pre-subsidence paleoenvironment likely was above the upper limit of foraminiferal habitation. The subsidence estimate for the ca. 875 cal yr B.P. earthquake is less than (<50%) the subsidence estimates for other contacts and suggests that subsidence magnitude varied over the past four earthquake cycles in southern Cascadia.more » « less
-
Abstract Contemporary crustal uplift and relative sea level (RSL) change in Greenland is caused by the response of the solid Earth to ongoing and historical ice mass change. Glacial isostatic adjustment (GIA) models, which seek to match patterns of land surface displacement and RSL change, typically employ a linear Maxwell viscoelastic model for the Earth's mantle. In Greenland, however, upper mantle viscosities inferred from ice load changes and other geophysical phenomena occurring over a range of timescales vary by up to two orders of magnitude. Here, we use full‐spectrum rheological models to examine the influence of transient deformation within the Greenland upper mantle, which may account for these differing viscosity estimates. We use observations of shear wave velocity combined with constitutive rheological models to self‐consistently calculate mechanical properties including the apparent upper mantle viscosity and lithosphere thickness across a broad spectrum of frequencies. We find that the contribution of transient behavior is most significant over loading timescales of 102–103 years, which corresponds to the timeframe of ice mass loss over recent centuries. Predicted apparent lithosphere thicknesses are also in good agreement with inferences made across seismic, GIA, and flexural timescales. Our results indicate that full‐spectrum constitutive models that more fully capture broadband mantle relaxation provide a means of reconciling seemingly contradictory estimates of Greenland's upper mantle viscosity and lithosphere thickness made from observations spanning a range of timescales.more » « less