Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The majority of ice mass loss from Antarctica flows through narrow, fast sliding regions of ice. The lateral boundaries of these regions, termed shear margins, are characterized by lateral shear strains in excess of ∼10−3 yr−1. Shear heating within these margins could warm ice significantly–even to the melting point–but other processes such as lateral advection of cold ice and fabric development compete with this effect. Radar observations can help constrain where temperate ice exists because englacial temperature increases electric conductivity which increases radar attenuation. We utilize the temperature‐dependent attenuation of ice to develop a novel method for constraining englacial temperature in shear margins by combining existing thermal models with very high frequency radar depth‐sounding data. We find evidence supporting temperate shear margins in 18 locations and find evidence for non‐temperate margins in 37 locations, notably in the Amundsen Sea Embayment.more » « less
- 
            Signal characteristics of surface seismic explosive sources near the West Antarctic Ice Sheet divideAbstract Seismic imaging in 3-D holds great potential for improving our understanding of ice sheet structure and dynamics. Conducting 3-D imaging in remote areas is simplified by using lightweight and logistically straightforward sources. We report results from controlled seismic source tests carried out near the West Antarctic Ice Sheet Divide investigating the characteristics of two types of surface seismic sources, Poulter shots and detonating cord, for use in both 2-D and 3-D seismic surveys on glaciers. Both source types produced strong basal P-wave and S-wave reflections and multiples recorded in three components. The Poulter shots had a higher amplitude for low frequencies (<10 Hz) and comparable amplitude at high frequencies (>50 Hz) relative to the detonating cord. Amplitudes, frequencies, speed of source set-up, and cost all suggested Poulter shots to be the preferred surface source compared to detonating cord for future 2-D and 3-D seismic surveys on glaciers.more » « less
- 
            Abstract We construct a high‐resolution shear‐wave velocity (VS) model for the uppermost 100 m using ambient noise tomography near the West Antarctic Ice Sheet Divide camp. This is achieved via joint inversion of Rayleigh wave phase velocity and H/V ratio, whose signal‐to‐noise ratios are boosted by three‐station interferometry and phase‐matched filtering, respectively. The VSshows a steep increase (0.04–0.9 km/s) in the top 5 m, with sharp interfaces at ∼8–12 m, followed by a gradual increase (1.2–1.8 km/s) between 10 and 45 m depth, and to 2 km/s at ∼65 m. The compressional‐wave velocity and empirically‐obtained density profile compares well with the results from Herglotz–Wiechert inversion of diving waves in active‐source shot experiments and ice core analysis. Our approach offers a tool to characterize high‐resolution properties of the firn and shallow ice column, which helps to infer the physical properties of deeper ice sheets, thereby contributes to improved understanding of Earth's cryosphere.more » « less
- 
            Abstract Projections of global sea level depend sensitively on whether Thwaites Glacier, Antarctica, will continue to lose ice rapidly. Prior studies have focused primarily on understanding the evolution of ice velocity and whether the reverse‐sloping bed at Thwaites Glacier could drive irreversible retreat. However, the overall ice flux to the ocean and the possibility of irreversible retreat depend not only on the ice speed but also on the width of the main ice trunk. Here, we complement prior work by focusing specifically on understanding whether the lateral boundaries of the main ice trunk, termed shear margins, might migrate over time. We hypothesize that the shear margins at Thwaites Glacier will migrate on a decadal timescale in response to continued ice thinning and surface steepening. We test this hypothesis by developing a depth‐averaged, thermomechanical free‐boundary model that captures the complex topography underneath the glacier and solves for both the ice velocity and for the position of the shear margins. We find that both shear margins are prone to migration in response to ice thinning with basal strength and surface slope steepening determining their relative motion. We construct four end‐member cases of basal strength that represent different physical properties governing friction at the glacier bed and present two cases of ice thinning to contrast the effects of surface steepening and ice thinning. We test our model by hindcasting historic data and discuss how data from ongoing field campaigns could further be used to test our model.more » « less
- 
            Abstract Understanding the dynamic response of glaciers to climate change is vital for assessing water resources and hazards, and subglacial hydrology is a key player in glacier systems. Traditional observations of subglacial hydrology are spatially and temporally limited, but recent seismic deployments on and around glaciers show the potential for comprehensive observation of glacial hydrologic systems. We present results from a high‐density seismic deployment spanning the surface of Lemon Creek Glacier, Alaska. Our study coincided with a marginal lake drainage event, which served as a natural experiment for seismic detection of changes in subglacial hydrology. We observed glaciohydraulic tremor across the surface of the glacier that was generated by the subglacial hydrologic system. During the lake drainage, the relative changes in seismic tremor power and water flux are consistent with pressurization of the subglacial system of only the upper part of the glacier. This event was not accompanied by a significant increase in glacier velocity; either some threshold necessary for rapid basal motion was not attained, or, plausibly, the geometry of Lemon Creek Glacier inhibited speedup. This pressurization event would have likely gone undetected without seismic observations, demonstrating the power of cryoseismology in testing assumptions about and mapping the spatial extent of subglacial pressurization.more » « less
- 
            Abstract In airborne radargrams, undulating periodic patterns in amplitude that overprint traditional radiostratigraphic layering are occasionally observed, however, they have yet to be analyzed from a geophysical or glaciological perspective. We present evidence supported by theory that these depth‐periodic patterns are consistent with a modulation of the received radar power due to the birefringence of polar ice, and therefore indicate the presence of bulk fabric anisotropy. Here, we investigate the periodic component of birefringence‐induced radar power recorded in airborne radar data at the eastern shear margin of Thwaites Glacier and quantify the lateral variation in azimuthal fabric strength across this margin. We find the depth variability of birefringence periodicity crossing the shear margin to be a visual expression of its shear state and its development, which appears consistent with present‐day ice deformation. The morphology of the birefringent patterns is centered at the location of maximum shear and observed in all cross‐margin profiles, consistent with predictions of ice fabric when subjected to simple shear. The englacial fabric appears stronger inside the ice stream than outward of the shear margin. The detection of birefringent periodicity from non‐polarimetric radargrams presents a novel use of subsurface radar to constrain lateral variations in fabric strength, locate present and past shear margins, and characterize the deformation history of polar ice sheets.more » « less
- 
            Abstract Increasing coastal flooding threatens urban centers worldwide. Projections of physical damages to structures and their contents can characterize the monetary scale of risk, but they lack relevant socioeconomic context. The impact of coastal flooding on communities hinges not only on the cost, but on the ability of households to pay for the damages. Here, we repurpose probabilistic risk assessment to analyze the monetary and social risk associated with coastal flooding in the San Francisco Bay Area for 2020–2060. We show that future coastal flooding could financially ruin a substantial number of households by burdening them with flood damage costs that exceed discretionary household income. We quantify these impacts at the census block group scale by computing the percentage of households without discretionary income, before and after coastal flooding costs. We find that for several coastal communities in San Mateo County more than 50% of households will be facing financial instability, highlighting the need for immediate policy interventions that target existing, socially produced risk rather than waiting for potentially elusive certainty in sea level rise projections. We emphasize that the percentage of financially unstable households is particularly high in racially diverse and historically disadvantaged communities, highlighting the connection between financial instability and inequity. While our estimates are specific to the San Francisco Bay Area, our granular, household‐level perspective is transferable to other urban centers and can help identify the specific challenges that different communities face and inform appropriate adaptation interventions.more » « less
- 
            Abstract Ambient seismic recordings taken at broad locations across Ross Ice Shelf and a dense array near West Antarctic Ice Sheet (WAIS) Divide, Antarctica, show pervasive temporally variable resonance peaks associated with trapped seismic waves in near-surface firn layers. These resonance peaks feature splitting on the horizontal components, here interpreted as frequency-dependent anisotropy in the firn and underlying ice due to several overlapping mechanisms driven by ice flow. Frequency peak splitting magnitudes and fast/slow axes were systematically estimated at single stations using a novel algorithm and compared with good agreement with active source anisotropy measurements at WAIS Divide determined via active sources recorded on a 1 km circular array. The approach was further applied to the broad Ross Ice Shelf (RIS) array, where anisotropy axes were directly compared with visible surface features and ice shelf flow lines. The near-surface firn, depicted by anisotropy above 30 Hz, was shown to exhibit a novel plastic stretching mechanism of anisotropy, whereby the fast direction in snow aligns with accelerating ice shelf flow.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
