We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems, namely, Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. The input in hypergraph k-partitioning problems is a hypergraph [Formula: see text] with positive hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V into k nonempty parts [Formula: see text]—known as a k-partition—so as to minimize an objective of interest. (1) If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-k-Partition. A subset of hyperedges is a minmax-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Minmax-Hypergraph-k-Partition. (2) If the objective of interest is the total cost of hyperedges crossing the k-partition, then the problem is known as Hypergraph-k-Cut. A subset of hyperedges is a min-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Hypergraph-k-Cut. We give the first polynomial bound on the number of minmax-k-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong enough to also enable an [Formula: see text]-time deterministic algorithm to enumerate all min-k-cut-sets in hypergraphs, thus improving on the previously known [Formula: see text]-time deterministic algorithm, in which n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs). Funding: All authors were supported by NSF AF 1814613 and 1907937.
more »
« less
Edge-Cuts of Optimal Average Weights
Let [Formula: see text] be a directed graph associated with a weight [Formula: see text]. For an edge-cut [Formula: see text] of [Formula: see text], the average weight of [Formula: see text] is denoted and defined as [Formula: see text]. An optimal edge-cut with average weight is an edge-cut [Formula: see text] such that [Formula: see text] is maximum among all edge-cuts (or minimum, symmetrically). In this paper, a polynomial algorithm for this problem is proposed for finding an optimal edge-cut in a rooted tree separating the root and the set of all leafs. This algorithm enables us to develop an automatic clustering method with more accurate detection of community output.
more »
« less
- Award ID(s):
- 1700218
- PAR ID:
- 10144219
- Date Published:
- Journal Name:
- Asia-Pacific Journal of Operational Research
- Volume:
- 36
- Issue:
- 02
- ISSN:
- 0217-5959
- Page Range / eLocation ID:
- 1940006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study optimal design problems in which the goal is to choose a set of linear measurements to obtain the most accurate estimate of an unknown vector. We study the [Formula: see text]-optimal design variant where the objective is to minimize the average variance of the error in the maximum likelihood estimate of the vector being measured. We introduce the proportional volume sampling algorithm to obtain nearly optimal bounds in the asymptotic regime when the number [Formula: see text] of measurements made is significantly larger than the dimension [Formula: see text] and obtain the first approximation algorithms whose approximation factor does not degrade with the number of possible measurements when [Formula: see text] is small. The algorithm also gives approximation guarantees for other optimal design objectives such as [Formula: see text]-optimality and the generalized ratio objective, matching or improving the previously best-known results. We further show that bounds similar to ours cannot be obtained for [Formula: see text]-optimal design and that [Formula: see text]-optimal design is NP-hard to approximate within a fixed constant when [Formula: see text].more » « less
-
We study the problem of covering barrier points by mobile sensors. Each sensor is represented by a point in the plane with the same covering range [Formula: see text] so that any point within distance [Formula: see text] from the sensor can be covered by the sensor. Given a set [Formula: see text] of [Formula: see text] points (called “barrier points”) and a set [Formula: see text] of [Formula: see text] points (representing the “sensors”) in the plane, the problem is to move the sensors so that each barrier point is covered by at least one sensor and the maximum movement of all sensors is minimized. The problem is NP-hard. In this paper, we consider two line-constrained variations of the problem and present efficient algorithms that improve the previous work. In the first problem, all sensors are given on a line [Formula: see text] and are required to move on [Formula: see text] only while the barrier points can be anywhere in the plane. We propose an [Formula: see text] time algorithm for the problem. We also consider the weighted case where each sensor has a weight; we give an [Formula: see text] time algorithm for this case. In the second problem, all barrier points are on [Formula: see text] while all sensors are in the plane but are required to move onto [Formula: see text] to cover all barrier points. We also solve the weighted case in [Formula: see text] time.more » « less
-
We study the minimum spanning arborescence problem on the complete digraph [Formula: see text], where an edge e has a weight W e and a cost C e , each of which is an independent uniform random variable U s , where [Formula: see text] and U is uniform [Formula: see text]. There is also a constraint that the spanning arborescence T must satisfy [Formula: see text]. We establish, for a range of values for [Formula: see text], the asymptotic value of the optimum weight via the consideration of a dual problem.more » « less
-
We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian [Formula: see text] in a Lipschitz bounded domain [Formula: see text] satisfying the exterior ball condition. The weight is a power of the distance to the boundary [Formula: see text] of [Formula: see text] that accounts for the singular boundary behavior of the solution for any [Formula: see text]. These bounds then serve us as a guide in the design and analysis of a finite element scheme over graded meshes for any dimension [Formula: see text], which is optimal for [Formula: see text].more » « less
An official website of the United States government

