skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnetic field induced polarization difference between hyperons and anti-hyperons
Award ID(s):
1913729
PAR ID:
10144474
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physics Letters B
Volume:
798
Issue:
C
ISSN:
0370-2693
Page Range / eLocation ID:
134929
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Neutron stars may experience differential rotation on short, dynamical timescales following extreme astrophysical events like binary neutron star mergers. In this work, the masses and radii of differentially rotating neutron star models are computed. We employ a set of equations of states for dense hypernuclear and ‐admixed‐hypernuclear matter obtained within the framework of CDF theory in the relativistic Hartree‐Fock (RHF) approximation. Results are shown for varying meson‐ couplings, or equivalently the ‐potential in nuclear matter. A comparison of our results with those obtained for nonrotating stars shows that the maximum mass difference between differentially rotating and static stars is independent of the underlying particle composition of the star. We further find that the decrease in the radii and increase in the maximum masses of stellar models when ‐isobars are added to hyperonuclear matter (as initially observed for static and uniformly rotating stars) persist also in the case of differentially rotating neutron stars. 
    more » « less