Picking an item in the presence of other objects can be challenging as it involves occlusions and partial views. Given object models, one approach is to perform object pose estimation and use the most likely candidate pose per object to pick the target without collisions. This approach, however, ignores the uncertainty of the perception process both regarding the target’s and the surrounding objects’ poses. This work proposes first a perception process for 6D pose estimation, which returns a discrete distribution of object poses in a scene. Then, an open-loop planning pipeline is proposed to return safe and effective solutions for moving a robotic arm to pick, which (a) minimizes the probability of collision with the obstructing objects; and (b) maximizes the probability of reaching the target item. The planning framework models the challenge as a stochastic variant of the Minimum Constraint Removal (MCR) problem. The effectiveness of the methodology is verified given both simulated and real data in different scenarios. The experiments demonstrate the importance of considering the uncertainty of the perception process in terms of safe execution. The results also show that the methodology is more effective than conservative MCR approaches, which avoid all possible object poses regardless of the reported uncertainty.
more »
« less
Scene-level Pose Estimation for Multiple Instances of Densely Packed Objects
This paper introduces key machine learning operations that allow the
realization of robust, joint 6D pose estimation of multiple instances of objects either densely packed or in unstructured piles from RGB-D data. The first objective is to learn semantic and instance-boundary detectors without manual labeling. An adversarial training framework in conjunction with physics-based simulation is used to achieve detectors that behave similarly in synthetic and real data. Given the stochastic output of such detectors, candidates for object poses are sampled. The second objective is to automatically learn a single score for each pose candidate that represents its quality in terms of explaining the entire scene via a gradient boosted tree. The proposed method uses features derived from surface and boundary alignment between the observed scene and the object model placed at hypothesized poses. Scene-level, multi-instance pose estimation is then achieved by an integer linear programming process that selects hypotheses that maximize the sum of the learned individual scores, while respecting constraints, such as avoiding collisions. To evaluate this method, a dataset of densely packed objects with challenging setups for state-of-the-art approaches is collected. Experiments on this dataset and a public one show that the method significantly outperforms alternatives
in terms of 6D pose accuracy while trained only with synthetic datasets.
more »
« less
- NSF-PAR ID:
- 10144833
- Date Published:
- Journal Name:
- Conference on Robot Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Accurate pose estimation is often a requirement for robust robotic grasping and manipulation of objects placed in cluttered, tight environments, such as a shelf with multiple objects. When deep learning approaches are employed to perform this task, they typically require a large amount of training data. However, obtaining precise 6 degrees of freedom for ground-truth can be prohibitively expensive. This work therefore proposes an architecture and a training process to solve this issue. More precisely, we present a weak object detector that enables localizing objects and estimating their 6D poses in cluttered and occluded scenes. To minimize the human labor required for annotations, the proposed detector is trained with a combination of synthetic and a few weakly annotated real images (as little as 10 images per object), for which a human provides only a list of objects present in each image (no time-consuming annotations, such as bounding boxes, segmentation masks and object poses). To close the gap between real and synthetic images, we use multiple domain classifiers trained adversarially. During the inference phase, the resulting class-specific heatmaps of the weak detector are used to guide the search of 6D poses of objects. Our proposed approach is evaluated on several publicly available datasets for pose estimation. We also evaluated our model on classification and localization in unsupervised and semi-supervised settings. The results clearly indicate that this approach could provide an efficient way toward fully automating the training process of computer vision models used in robotics.more » « less
-
Scene-level Programming by Demonstration (PbD) is faced with an important challenge - perceptual uncertainty. Addressing this problem, we present a scene-level PbD paradigm that programs robots to perform goal-directed manipulation in unstructured environments with grounded perception. Scene estimation is enabled by our discriminatively-informed generative scene estimation method (DIGEST). Given scene observations, DIGEST utilizes candidates from discriminative object detectors to generate and evaluate hypothesized scenes of object poses. Scene graphs are generated from the estimated object poses, which in turn is used in the PbD system for high-level task planning. We demonstrate that DIGEST performs better than existing method and is robust to false positive detections. Building a PbD system on DIGEST, we show experiments of programming a Fetch robot to set up a tray for delivery with various objects through demonstration of goal scenes.more » « less
-
Many manipulation tasks, such as placement or within-hand manipulation, require the object’s pose relative to a robot hand. The task is difficult when the hand significantly occludes the object. It is especially hard for adaptive hands, for which it is not easy to detect the finger’s configuration. In addition, RGB-only approaches face issues with texture-less objects or when the hand and the object look similar. This paper presents a depth-based framework, which aims for robust pose estimation and short response times. The approach detects the adaptive hand’s state via efficient parallel search given the highest overlap between the hand’s model and the point cloud. The hand’s point cloud is pruned and robust global registration is performed to generate object pose hypotheses, which are clustered. False hypotheses are pruned via physical reasoning. The remaining poses’ quality is evaluated given agreement with observed data. Extensive evaluation on synthetic and real data demonstrates the accuracy and computational efficiency of the framework when applied on challenging, highly-occluded scenarios for different object types. An ablation study identifies how the framework’s components help in performance. This work also provides a dataset for in-hand 6D object pose esti- mation. Code and dataset are available at: https://github. com/wenbowen123/icra20-hand-object-posemore » « less
-
We present an architecture for online, incremental scene modeling which combines a SLAM-based scene understanding framework with semantic segmentation and object pose estimation. The core of this approach comprises a probabilistic inference scheme that predicts semantic labels for object hypotheses at each new frame. From these hypotheses, recognized scene structures are incrementally constructed and tracked. Semantic labels are inferred using a multi-domain convolutional architecture which operates on the image time series and which enables efficient propagation of features as well as robust model registration. To evaluate this architecture, we introduce a large-scale RGB-D dataset JHUSEQ-25 as a new benchmark for the sequence-based scene understanding in complex and densely cluttered scenes. This dataset contains 25 RGB-D video sequences with 100,000 labeled frames in total. We validate our method on this dataset and demonstrate improved performance of semantic segmentation and 6-DoF object pose estimation compared with methods based on the single view.more » « less