- NSF-PAR ID:
- 10191546
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation (ICRA)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We consider the problem of in-hand dexterous manipulation with a focus on unknown or uncertain hand–object parameters, such as hand configuration, object pose within hand, and contact positions. In particular, in this work we formulate a generic framework for hand–object configuration estimation using underactuated hands as an example. Owing to the passive reconfigurability and the lack of encoders in the hand’s joints, it is challenging to estimate, plan, and actively control underactuated manipulation. By modeling the grasp constraints, we present a particle filter-based framework to estimate the hand configuration. Specifically, given an arbitrary grasp, we start by sampling a set of hand configuration hypotheses and then randomly manipulate the object within the hand. While observing the object’s movements as evidence using an external camera, which is not necessarily calibrated with the hand frame, our estimator calculates the likelihood of each hypothesis to iteratively estimate the hand configuration. Once converged, the estimator is used to track the hand configuration in real time for future manipulations. Thereafter, we develop an algorithm to precisely plan and control the underactuated manipulation to move the grasped object to desired poses. In contrast to most other dexterous manipulation approaches, our framework does not require any tactile sensing or joint encoders, and can directly operate on any novel objects, without requiring a model of the object a priori. We implemented our framework on both the Yale Model O hand and the Yale T42 hand. The results show that the estimation is accurate for different objects, and that the framework can be easily adapted across different underactuated hand models. In the end, we evaluated our planning and control algorithm with handwriting tasks, and demonstrated the effectiveness of the proposed framework.more » « less
-
The process of modeling a series of hand-object parameters is crucial for precise and controllable robotic in-hand manipulation because it enables the mapping from the hand’s actuation input to the object’s motion to be obtained. Without assuming that most of these model parameters are known a priori or can be easily estimated by sensors, we focus on equipping robots with the ability to actively self-identify necessary model parameters using minimal sensing. Here, we derive algorithms, on the basis of the concept of virtual linkage-based representations (VLRs), to self-identify the underlying mechanics of hand-object systems via exploratory manipulation actions and probabilistic reasoning and, in turn, show that the self-identified VLR can enable the control of precise in-hand manipulation. To validate our framework, we instantiated the proposed system on a Yale Model O hand without joint encoders or tactile sensors. The passive adaptability of the underactuated hand greatly facilitates the self-identification process, because they naturally secure stable hand-object interactions during random exploration. Relying solely on an in-hand camera, our system can effectively self-identify the VLRs, even when some fingers are replaced with novel designs. In addition, we show in-hand manipulation applications of handwriting, marble maze playing, and cup stacking to demonstrate the effectiveness of the VLR in precise in-hand manipulation control.
-
Constraining contacts to remain fixed on an object during manipulation limits the potential workspace size, as motion is subject to the hand’s kinematic topology. Finger gaiting is one way to alleviate such restraints. It allows contacts to be freely broken and remade so as to operate on different manipulation manifolds. This capability, however, has traditionally been difficult or impossible to practically realize. A finger gaiting system must simultaneously plan for and control forces on the object while maintaining stability during contact switching. This letter alleviates the traditional requirement by taking advantage of system compliance, allowing the hand to more easily switch contacts while maintaining a stable grasp. Our method achieves complete SO(3) finger gaiting control of grasped objects against gravity by developing a manipulation planner that operates via orthogonal safe modes of a compliant, underactuated hand absent of tactile sensors or joint encoders. During manipulation, a low-latency 6D pose object tracker provides feedback via vision, allowing the planner to update its plan online so as to adaptively recover from trajectory deviations. The efficacy of this method is showcased by manipulating both convex and non-convex objects on a real robot. Its robustness is evaluated via perturbation rejection and long trajectory goals. To the best of the authors’ knowledge, this is the first work that has autonomously achieved full SO(3) control of objects within-hand via finger gaiting and without a support surface, elucidating a valuable step towards realizing true robot in-hand manipulation capabilities.more » « less
-
This work proposes a framework for tracking a desired path of an object held by an adaptive hand via within-hand manipulation. Such underactuated hands are able to passively achieve stable contacts with objects. Combined with vision-based control and data-driven state estimation process, they can solve tasks without accurate hand-object models or multi-modal sensory feedback. In particular, a data-driven regression process is used here to estimate the probability of dropping the object for given manipulation states. Then, an optimization-based planner aims to track the desired path while avoiding states that are above a threshold probability of dropping the object. The optimized cost function, based on the principle of Dynamic-Time Warping (DTW), seeks to minimize the area between the desired and the followed path. By adapting the threshold for the probability of dropping the object, the framework can handle objects of different weights without retraining. Experiments involving writing letters with a marker, as well as tracing randomized paths, were conducted on the Yale Model T-42 hand. Results indicate that the framework successfully avoids undesirable states, while minimizing the proposed cost function, thereby producing object paths for within-hand manipulation that closely match the target ones.more » « less
-
Tracking the 6D pose of objects in video sequences is important for robot manipulation. This task, however, in- troduces multiple challenges: (i) robot manipulation involves significant occlusions; (ii) data and annotations are troublesome and difficult to collect for 6D poses, which complicates machine learning solutions, and (iii) incremental error drift often accu- mulates in long term tracking to necessitate re-initialization of the object’s pose. This work proposes a data-driven opti- mization approach for long-term, 6D pose tracking. It aims to identify the optimal relative pose given the current RGB-D observation and a synthetic image conditioned on the previous best estimate and the object’s model. The key contribution in this context is a novel neural network architecture, which appropriately disentangles the feature encoding to help reduce domain shift, and an effective 3D orientation representation via Lie Algebra. Consequently, even when the network is trained only with synthetic data can work effectively over real images. Comprehensive experiments over benchmarks - existing ones as well as a new dataset with significant occlusions related to object manipulation - show that the proposed approach achieves consistently robust estimates and outperforms alternatives, even though they have been trained with real images. The approach is also the most computationally efficient among the alternatives and achieves a tracking frequency of 90.9Hz.more » « less