skip to main content


Title: Origin and Evolution of Carboxysome Positioning Systems in Cyanobacteria
Abstract Carboxysomes are protein-based organelles that are essential for allowing cyanobacteria to fix CO2. Previously, we identified a two-component system, McdAB, responsible for equidistantly positioning carboxysomes in the model cyanobacterium Synechococcus elongatus PCC 7942 (MacCready JS, Hakim P, Young EJ, Hu L, Liu J, Osteryoung KW, Vecchiarelli AG, Ducat DC. 2018. Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. eLife 7:pii:e39723). McdA, a ParA-type ATPase, nonspecifically binds the nucleoid in the presence of ATP. McdB, a novel factor that directly binds carboxysomes, displaces McdA from the nucleoid. Removal of McdA from the nucleoid in the vicinity of carboxysomes by McdB causes a global break in McdA symmetry, and carboxysome motion occurs via a Brownian-ratchet-based mechanism toward the highest concentration of McdA. Despite the importance for cyanobacteria to properly position their carboxysomes, whether the McdAB system is widespread among cyanobacteria remains an open question. Here, we show that the McdAB system is widespread among β-cyanobacteria, often clustering with carboxysome-related components, and is absent in α-cyanobacteria. Moreover, we show that two distinct McdAB systems exist in β-cyanobacteria, with Type 2 systems being the most ancestral and abundant, and Type 1 systems, like that of S. elongatus, possibly being acquired more recently. Lastly, all McdB proteins share the sequence signatures of a protein capable of undergoing liquid–liquid phase separation. Indeed, we find that representatives of both McdB types undergo liquid–liquid phase separation in vitro, the first example of a ParA-type ATPase partner protein to exhibit this behavior. Our results have broader implications for understanding carboxysome evolution, biogenesis, homeostasis, and positioning in cyanobacteria.  more » « less
Award ID(s):
1817478 1941966
NSF-PAR ID:
10145101
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecular Biology and Evolution
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plain language summary

    Cyanobacteria are well known to fix atmospheric CO2into sugars using the enzyme Rubisco. Less appreciated are the carbon‐fixing abilities of proteobacteria with diverse metabolisms. Bacterial Rubisco is housed within organelles called carboxysomes that increase enzymatic efficiency. Here we show that proteobacterial carboxysomes are distributed in the cell by two proteins, McdA and McdB. McdA on the nucleoid interacts with McdB on carboxysomes to equidistantly space carboxysomes from one another, ensuring metabolic homeostasis and a proper inheritance of carboxysomes following cell division. This study illuminates how widespread carboxysome positioning systems are among diverse bacteria. Carboxysomes significantly contribute to global carbon fixation; therefore, understanding the spatial organization mechanism shared across the bacterial world is of great interest.

     
    more » « less
  2. Across bacteria, protein-based organelles called bacterial microcompartments (BMCs) encapsulate key enzymes to regulate their activities. The model BMC is the carboxysome that encapsulates enzymes for CO2fixation to increase efficiency and is found in many autotrophic bacteria, such as cyanobacteria. Despite their importance in the global carbon cycle, little is known about how carboxysomes are spatially regulated. We recently identified the two-factor system required for the maintenance of carboxysome distribution (McdAB). McdA drives the equal spacing of carboxysomes via interactions with McdB, which associates with carboxysomes. McdA is a ParA/MinD ATPase, a protein family well studied in positioning diverse cellular structures in bacteria. However, the adaptor proteins like McdB that connect these ATPases to their cargos are extremely diverse. In fact, McdB represents a completely unstudied class of proteins. Despite the diversity, many adaptor proteins undergo phase separation, but functional roles remain unclear. Here, we define the domain architecture of McdB from the model cyanobacteriumSynechococcus elongatusPCC 7942, and dissect its mode of biomolecular condensate formation. We identify an N-terminal intrinsically disordered region (IDR) that modulates condensate solubility, a central coiled-coil dimerizing domain that drives condensate formation, and a C-terminal domain that trimerizes McdB dimers and provides increased valency for condensate formation. We then identify critical basic residues in the IDR, which we mutate to glutamines to solubilize condensates. Finally, we find that a condensate-defective mutant of McdB has altered association with carboxysomes and influences carboxysome enzyme content. The results have broad implications for understanding spatial organization of BMCs and the molecular grammar of protein condensates.

     
    more » « less
  3. Goley, Erin (Ed.)
    Carboxysomes, the most prevalent and well-studied anabolic bacterial microcompartment, play a central role in efficient carbon fixation by cyanobacteria and proteobacteria. In previous studies, we identified the two-component system called McdAB that spatially distributes carboxysomes across the bacterial nucleoid. Maintenance of carboxysome distribution protein A (McdA), a partition protein A (ParA)-like ATPase, forms a dynamic oscillating gradient on the nucleoid in response to the carboxysome-localized Maintenance of carboxysome distribution protein B (McdB). As McdB stimulates McdA ATPase activity, McdA is removed from the nucleoid in the vicinity of carboxysomes, propelling these proteinaceous cargos toward regions of highest McdA concentration via a Brownian-ratchet mechanism. How the ATPase cycle of McdA governs its in vivo dynamics and carboxysome positioning remains unresolved. Here, by strategically introducing amino acid substitutions in the ATP-binding region of McdA, we sequentially trap McdA at specific steps in its ATP cycle. We map out critical events in the ATPase cycle of McdA that allows the protein to bind ATP, dimerize, change its conformation into a DNA-binding state, interact with McdB-bound carboxysomes, hydrolyze ATP, and release from the nucleoid. We also find that McdA is a member of a previously unstudied subset of ParA family ATPases, harboring unique interactions with ATP and the nucleoid for trafficking their cognate intracellular cargos. 
    more » « less
  4. Cyanobacteria are tiny organisms that can harness the energy of the sun to power their cells. Many of the tools required for this complex photosynthetic process are packaged into small compartments inside the cell, the carboxysomes. In Synechococcus elongatus, a cyanobacterium that is shaped like a rod, the carboxysomes are positioned at regular intervals along the length of the cell. This ensures that, when the bacterium splits itself in half to reproduce, both daughter cells have the same number of carboxysomes. Researchers know that, in S. elongatus, a protein called McdA can oscillate from one end of the cell to the other. This protein is responsible for the carboxysomes being in the right place, and some scientists believe that it helps to create an internal skeleton that anchors and drags the compartments into position. Here, MacCready et al. propose another mechanism and, by combining various approaches, identify a new partner for McdA. This protein, called McdB, is present on the carboxysomes. McdB also binds to McdA, which itself attaches to the nucleoid – the region in the cell that contains the DNA. McdB forces McdA to release itself from DNA, causing the protein to reposition itself along the nucleoid. Because McdB attaches to McdA, the carboxysomes then follow suit, constantly seeking the highest concentrations of McdA bound to nearby DNA. Instead of relying on a cellular skeleton, these two proteins can organize themselves on their own using the nucleoid as a scaffold; in turn, they distribute carboxysomes evenly along the length of a cell. Plants also obtain their energy from the sun via photosynthesis, but they do not carry carboxysomes. Scientists have tried to introduce these compartments inside plant cells, hoping that it could generate crops with higher yields. Knowing how carboxysomes are organized so they can be passed down from one generation to the next could be important for these experiments. 
    more » « less
  5. Komeili, Arash (Ed.)
    ABSTRACT Cyanobacteria are the prokaryotic group of phytoplankton responsible for a significant fraction of global CO 2 fixation. Like plants, cyanobacteria use the enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco) to fix CO 2 into organic carbon molecules via the Calvin-Benson-Bassham cycle. Unlike plants, cyanobacteria evolved a carbon-concentrating organelle called the carboxysome—a proteinaceous compartment that encapsulates and concentrates Rubisco along with its CO 2 substrate. In the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, we recently identified the McdAB system responsible for uniformly distributing carboxysomes along the cell length. It remains unknown what role carboxysome positioning plays with respect to cellular physiology. Here, we show that a failure to distribute carboxysomes leads to slower cell growth, cell elongation, asymmetric cell division, and elevated levels of cellular Rubisco. Unexpectedly, we also report that even wild-type S. elongatus undergoes cell elongation and asymmetric cell division when grown at the cool, but environmentally relevant, growth temperature of 20°C or when switched from a high- to ambient-CO 2 environment. The findings suggest that carboxysome positioning by the McdAB system functions to maintain the carbon fixation efficiency of Rubisco by preventing carboxysome aggregation, which is particularly important under growth conditions where rod-shaped cyanobacteria adopt a filamentous morphology. IMPORTANCE Photosynthetic cyanobacteria are responsible for almost half of global CO 2 fixation. Due to eutrophication, rising temperatures, and increasing atmospheric CO 2 concentrations, cyanobacteria have gained notoriety for their ability to form massive blooms in both freshwater and marine ecosystems across the globe. Like plants, cyanobacteria use the most abundant enzyme on Earth, Rubisco, to provide the sole source of organic carbon required for its photosynthetic growth. Unlike plants, cyanobacteria have evolved a carbon-concentrating organelle called the carboxysome that encapsulates and concentrates Rubisco with its CO 2 substrate to significantly increase carbon fixation efficiency and cell growth. We recently identified the positioning system that distributes carboxysomes in cyanobacteria. However, the physiological consequence of carboxysome mispositioning in the absence of this distribution system remains unknown. Here, we find that carboxysome mispositioning triggers changes in cell growth and morphology as well as elevated levels of cellular Rubisco. 
    more » « less