Abstract Hippocampal sharp‐wave ripples (SWRs) support the reactivation of memory representations, relaying information to neocortex during “offline” and sleep‐dependent memory consolidation. While blockade of NMDA receptors (NMDAR) is known to affect both learning and subsequent consolidation, the specific contributions of NMDAR activation to SWR‐associated activity remain unclear. Here, we combine biophysical modeling with in vivo local field potential (LFP) and unit recording to quantify changes in SWR dynamics following inactivation of NMDAR. In a biophysical model of CA3‐CA1 SWR activity, we find that NMDAR removal leads to reduced SWR density, but spares SWR properties such as duration, cell recruitment and ripple frequency. These predictions are confirmed by experiments in which NMDAR‐mediated transmission in rats was inhibited using three different NMDAR antagonists, while recording dorsal CA1 LFP. In the model, loss of NMDAR‐mediated conductances also induced a reduction in the proportion of cell pairs that co‐activate significantly above chance across multiple events. Again, this prediction is corroborated by dorsal CA1 single‐unit recordings, where the NMDAR blocker ketamine disrupted correlated spiking during SWR. Our results are consistent with a framework in which NMDA receptors both promote activation of SWR events and organize SWR‐associated spiking content. This suggests that, while SWR are short‐lived events emerging in fast excitatory‐inhibitory networks, slower network components including NMDAR‐mediated currents contribute to ripple density and promote consistency in the spiking content across ripples, underpinning mechanisms for fine‐tuning of memory consolidation processes.
more »
« less
Progress and issues in second-order analysis of hippocampal replay
Patterns of neural activity that occur spontaneously during sharp-wave ripple (SWR) events in the hippocampus are thought to play an important role in memory formation, consolidation and retrieval. Typical studies examining the content of SWRs seek to determine whether the identity and/or temporal order of cell firing is different from chance. Such ‘first-order’ analyses are focused on a single time point and template (map), and have been used to show, for instance, the existence of preplay. The major methodological challenge in first-order analyses is the construction and interpretation of different chance distributions. By contrast, ‘second-order’ analyses involve a comparison of SWR content between different time points, and/or between different templates. Typical second-order questions include tests of experience-dependence (replay) that compare SWR content before and after experience, and comparisons or replay between different arms of a maze. Such questions entail additional methodological challenges that can lead to biases in results and associated interpretations. We provide an inventory of analysis challenges for second-order questions about SWR content, and suggest ways of preventing, identifying and addressing possible analysis biases. Given evolving interest in understanding SWR content in more complex experimental scenarios and across different time scales, we expect these issues to become increasingly pervasive. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
more »
« less
- Award ID(s):
- 1844935
- PAR ID:
- 10145134
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 375
- Issue:
- 1799
- ISSN:
- 0962-8436
- Page Range / eLocation ID:
- 20190238
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vivid episodic memories in humans have been described as the replay of the flow of past events in sequential order. Recently, Panoz-Brown et al. (2018) developed an olfactory memory task in which rats were presented with a list of trial-unique odors in an encoding context; next, in a distinctive memory assessment context, the rats were rewarded for choosing the second to last item from the list while avoiding other items from the list. In a different memory assessment context, the fourth to last item was rewarded. According to the episodic memory replay hypothesis, the rat remembers the list items and searches these items to find the item at the targeted locations in the list. However, events presented sequentially differ in memory trace strength, allowing a rat to use the relative familiarity of the memory traces, instead of episodic memory replay, to solve the task. Here, we directly manipulated memory trace strength by manipulating the odor intensity of target odors in both the list presentation and memory assessment. The rats relied on episodic memory replay to solve the memory assessment in conditions in which reliance on memory trace strength is ruled out. We conclude that rats are able to replay episodic memories.more » « less
-
AbstractDuring spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during ‘offline’ resting periods, brief neuronal population bursts can ‘replay’ sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment. The neural circuit mechanisms underlying this variable and flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network model of hippocampal area CA3 that experimental constraints on network dynamics such as population sparsity, stimulus selectivity, rhythmicity and spike rate adaptation, as well as associative synaptic connectivity, enable additional emergent properties, including variable offline memory replay. In an online stimulus‐driven state, we observed the emergence of neuronal sequences that swept from representations of past to future stimuli on the timescale of the theta rhythm. In an offline state driven only by noise, the network generated both forward and reverse neuronal sequences, and recapitulated the experimental observation that offline memory replay events tend to include salient locations like the site of a reward. These results demonstrate that biological constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of sensory events stored in the strengths of synaptic connections to be flexibly read out during rest and sleep, which is thought to be important for memory consolidation and planning of future behaviour.image Key pointsA recurrent spiking network model of hippocampal area CA3 was optimized to recapitulate experimentally observed network dynamics during simulated spatial exploration.During simulated offline rest, the network exhibited the emergent property of generating flexible forward, reverse and mixed direction memory replay events.Network perturbations and analysis of model diversity and degeneracy identified associative synaptic connectivity and key features of network dynamics as important for offline sequence generation.Network simulations demonstrate that population over‐representation of salient positions like the site of reward results in biased memory replay.more » « less
-
Investigating attacks across multiple hosts is challenging. The true dependencies between security-sensitive files, network endpoints, or memory objects from different hosts can be easily concealed by dependency explosion or undefined program behavior (e.g., memory corruption). Dynamic information flow tracking (DIFT) is a potential solution to this problem, but, existing DIFT techniques only track information flow within a single host and lack an efficient mechanism to maintain and synchronize the data flow tags globally across multiple hosts. In this paper, we propose RTAG, an efficient data flow tagging and tracking mechanism that enables practical cross-host attack investigations. RTAG is based on three novel techniques. First, by using a record-and-replay technique, it decouples the dependencies between different data flow tags from the analysis, enabling lazy synchronization between independent and parallel DIFT instances of different hosts. Second, it takes advantage of systemcall-level provenance information to calculate and allocate the optimal tag map in terms of memory consumption. Third, it embeds tag information into network packets to track cross-host data flows with less than 0.05% network bandwidth overhead. Evaluation results show that RTAG is able to recover the true data flows of realistic cross-host attack scenarios. Performance wise, RTAG reduces the memory consumption of DIFT-based analysis by up to 90% and decreases the overall analysis time by 60%-90% compared with previous investigation systems.more » « less
-
I outline the perspective that searching the contents of memory is a form of mental time travel in nonhumans that is relatively tractable because it focuses on the contents of memory. I propose that an animal model of mental time travel requires three elements: (1) the animal remembers multiple events using episodic memory, (2) the order of events in time is included in the representation, and (3) the sequence of events can be searched to find a target that occurred at a particular time. I review experiments suggesting that rats represent multiple items in episodic memory (Element 1) in order of occurrence (Element 2) and engage in memory replay to search representations in episodic memory in sequential order to find information at particular points in the sequence (Element 3). The cognitive building blocks needed for mental time travel may be quite old in the evolutionary timescale.more » « less
An official website of the United States government

